

GNU Network Security Labyrinth
- or: an howto for network application authors

TLS
SASL
Kerberos
GSS-API

About me

Free software hacker

Independent consultant

http://josefsson.org/

http://josefsson.org/

Swedish

Nordic Free Software Award 2009

Member of fossgruppen.se

http://fossgruppen.se/

I'll talk about technologies
and their implementations

Technologies – Implementations

Kerberos – GNU Shishi
GSS-API – GNU GSS
SASL – GNU SASL
SSL/TLS – GnuTLS

What is all this about?

Alice & Mallory & Bob

Alice wants to talk to Bob

In private → encrypted

They want to know who they are talking to →
authenticated

We will write the tool that
Alice and Bob is using

It is a client and server

(could be peer-to-peer, but not today)

Client inputs: ADDR
1. Lookup ADDR in DNS
2. Open socket to destination adress
3. Exchange message

Server inputs: None
1. Listen on socket
2. Exchange messages

The tool is flawed

Alice doesn't know she is talking to Bob
Bob doesn't know he is talking to Alice
Mallory can listen to the conversation
Mallory can modify the conversation

Mallory can pretend to be Alice or Bob

Let's add TLS

TLS is the Transport Layer Security

TLS is the standardized
and improved variant of SSL

Client inputs: ADDR
1. Lookup ADDR in DNS
2. Open socket to destination adress
3. Perform TLS handshake
4. Exchange message

Server inputs: None
1. Listen on socket
2. Perform TLS handshake
3. Exchange messages

 int socket;
 gnutls_session_t session;
 gnutls_anon_client_credentials_t anoncred;

 gnutls_global_init ();
 gnutls_anon_allocate_client_credentials (&anoncred);
 gnutls_init (&session, GNUTLS_CLIENT);
 gnutls_priority_set_direct (session, "PERFORMANCE:+ANON-DH",
 NULL);
 gnutls_credentials_set (session, GNUTLS_CRD_ANON, anoncred);
 socket = tcp_connect ();
 gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) socket);
 ret = gnutls_handshake (session);
 gnutls_record_send (session, MSG, strlen (MSG));

The tool is still flawed

Alice doesn't know she is talking to Bob
Bob doesn't know he is talking to Alice

Mallory can listen to the conversation (as MITM)
Mallory can modify the conversation (as MITM)

Mallory can pretend to be Alice or Bob

TLS can do many things

It supports different Key Exchange methods

Anonymous Diffie Hellman – DH_anon
only protects against passive attacks

TLS supports keyed Diffie-Hellman

Pre-shared symmetric key (PSK) or a
verified public-key (RSA, DSA, ECDSA)

Let's skip PSK today

The server has a public-key
signed by a CA that the client trusts to verify

mapping between public-key and name

A signed public-key is stored in the form of a
Certificate – X.509 or OpenPGP

Clients may also have a public key signed by a
CA that the server trusts

Let's skip this today

Client inputs: ADDR, CA
1. Lookup ADDR in DNS
2. Open socket to destination adress
3. Perform TLS handshake
4. Verify server certificate against CA and ADDR
5. Exchange message

Server inputs: Certificate
1. Listen on socket
2. Perform TLS handshake with Certificate
3. Exchange messages

 int sd;
 gnutls_session_t session;
 gnutls_certificate_credentials_t xcred;

 gnutls_global_init ();
 gnutls_certificate_allocate_credentials (&xcred);
 gnutls_certificate_set_x509_trust_file (xcred, CAFILE,
 GNUTLS_X509_FMT_PEM);
 gnutls_init (&session, GNUTLS_CLIENT);
 gnutls_priority_set_direct (session, "NORMAL", NULL);
 gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);
 sd = tcp_connect ();
 gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);
 gnutls_handshake (session);
 gnutls_certificate_verify_peers2 (session, NULL);
 gnutls_record_send (session, MSG, strlen (MSG));

Now we are getting somewhere

Alice knows she is talking to Bob
Bob doesn't know he is talking to Alice

Mallory cannot listen to the conversation
Mallory cannot modify the conversation

Mallory can pretend to be Alice

Alice needs to trust the CA used by Bob

Similar security as provided on the web

Let's add SASL

SASL is the Simple Authentication
and Security Layer

SASL specified in RFC 4422

GNU SASL supports CRAM-MD5 EXTERNAL
GSSAPI ANONYMOUS PLAIN SECURID

DIGEST-MD5 SCRAM-SHA-1 SCRAM-SHA-1-
PLUS GS2-KRB5 LOGIN NTLM KERBEROS_V5

Most common mechanism is CRAM-MD5

CRAM-MD5 takes a username and a password

. AUTHENTICATE CRAM-MD5
+ PDUzMzMxMTg1MjUwMjM0OTQxMjM0LjBAbG9jYWxob3N0Pg==
YWxpY2UgM2MwOTI5ZjdkY2JjOTkyMDcyZWRhYzZjZTM3YWQ2ZjE=
. OK AUTHENTICATE CRAM-MD5 authentication success

Client inputs: ADDR, CA, USER, PASSWD
1. Lookup ADDR in DNS
2. Open socket to destination adress
3. Perform TLS handshake
4. Verify server certificate against CA and ADDR
5. Perform CRAM-MD5 with USER/PASSWD
6. Exchange message

Server inputs: Certificate, USER, PASSWD
1. Listen on socket
2. Perform TLS handshake with Certificate
3. Perform CRAM-MD5 with USER/PASSWD
4. Exchange messages

 Gsasl *ctx = NULL;
 Gsasl_session *session;
 int rc;

 gsasl_init (&ctx);
 gsasl_client_start (ctx, "CRAM-MD5", &session);
 gsasl_property_set (session, GSASL_AUTHID, "jas");
 gsasl_property_set (session, GSASL_PASSWORD, "secret");

 do
 {
 char buf[BUFSIZ] = "";
 char *p;
 rc = gsasl_step64 (session, buf, &p);
 send (p);
 recv (buf);
 }
 while (rc == GSASL_NEEDS_MORE);

 gsasl_finish (session);
 gsasl_done (ctx);

Alice knows she is talking to Bob
Bob knows he is talking to Alice

Mallory cannot listen to the conversation
Mallory cannot modify the conversation

Mallory cannot pretend to be Alice

Alice needs to trust the CA that Bob used
Bob needs to know Alice's password

Alice needs a password for every Bob

Let's use SCRAM-SHA-1-PLUS

(but call it SCRAM+)

SCRAM+ clients hash username, password and a
unique name (CB) of the TLS session

SCRAM+ servers can verify the hash using a
hashed form of the password

Client inputs: ADDR, CA, USER, PASSWD
1. Lookup ADDR in DNS
2. Open socket to destination adress
3. Perform TLS handshake
4. Verify server certificate against CA and ADDR
5. Extract CB from TLS session
6. Perform SCRAM+ with USER/PASSWD/CB
7. Exchange message

Server inputs: (Certificate), USER, PASSWD
1. Listen on socket
2. Perform TLS handshake (with Certificate)
3. Extract CB from TLS session
4. Perform SCRAM+ with USER/PASSWD/CB
5. Exchange messages

Alice knows she is talking to Bob
Bob knows he is talking to Alice

Mallory cannot listen to the conversation
Mallory cannot modify the conversation

Mallory cannot pretend to be Alice
Alice doesn't need to trust the CA used by Bob

Bob doesn't need to know Alice's password

Alice needs a password for every Bob

One password per service does not scale

Password reuse between services

Phishing

Don't forget to synchronize passwords
between all your devices

Let's add Kerberos

Kerberos introduces a trusted third party

Works well if Alice's and Bob's trust
the same third party

There are many Alice & Bob's at
universities and large enterprises

Alice acquires a ticket-granting-ticket (TGT)
using a username (principal) and password

The ticket-granting-ticket is used to
acquire one ticket per service

GNU Shishi implements Kerberos V5

GNU GSS implements the GSS-API for
”simpler” Kerberos programming

OM_uint32
gss_init_sec_context (
 OM_uint32 *minor_status,
 const gss_cred_id_t initiator_cred_handle,
 gss_ctx_id_t *context_handle,
 const gss_name_t target_name,
 const gss_OID mech_type,
 OM_uint32 req_flags,
 OM_uint32 time_req,
 const gss_channel_bindings_t input_chan_bindings,
 const gss_buffer_t input_token
 gss_OID *actual_mech_type,
 gss_buffer_t output_token,
 OM_uint32 *ret_flags,
 OM_uint32 *time_rec);

Preserve your sanity: use Kerberos/GSS-API
through your friendly SASL library

SASL mechanism for Kerberos
is called GS2-KRB5

GS2 specified in RFC 5801

(the author sounds familiar)

Client inputs: ADDR, KDC, USER, PASSWD
1. Get TGT with USER/PASSWD from KDC
2. Get service ticket for ADDR using TGT
3. Lookup ADDR in DNS
4. Open socket to destination adress
5. Perform TLS handshake
6. Extract CB from TLS session
7. Perform GS2KRB5+ with TGT/CB
8. Exchange message

Server inputs: (Certificate), SRVTAB
1. Listen on socket
2. Perform TLS handshake (with Certificate)
3. Extract CB from TLS session
4. Perform GS2KRB5+ with SRVTAB/CB
5. Exchange messages

Alice knows she is talking to Bob
Bob knows he is talking to Alice

Mallory cannot listen to the conversation
Mallory cannot modify the conversation

Mallory cannot pretend to be Alice
Alice doesn't need to trust the CA used by Bob

Bob doesn't need to know Alice's password
Alice doesn't need a password for every Bob

Alice and Bob needs to trust the same third party

We don't go further than this today

(to go beyond this you want to learn about
federated authentication)

This is the end my friend

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

