
Royal Institute of Technology
Dept. of Numerical Analysis and Computer Science

Network Application Security Using
The Domain Name System

by
Simon Josefsson

TRITA-NA-E01107

N
�

ADA

Nada (Numerisk analys och datalogi) Department of Numerical Analysis
KTH and Computer Science
100 44 Stockholm Royal Institute of Technology

SE-100 44 Stockholm, SWEDEN

Network Application Security Using
The Domain Name System

by
Simon Josefsson

TRITA-NA-E01107

Master’s Thesis in Computer Science (20 credits)
at the School of Matematisk-datalogisk linje,

Royal Institute of Technology year 2001
Supervisor at Nada was Mikael Goldmann

Examiner was Stefan Arnborg

Abstract

A major problem for a distributed security system is the management of cryp-
tographic keys. Public key techniques are often used to overcome many of the
problems. However, successful use of public key techniques in large systems such
as the Internet requires a certificate directory, that is, a mechanism to locate and
retrieve the public keys. In this thesis we explore how a common name lookup
mechanism, the Domain Name System (DNS), can be used to provide this func-
tionality. We show how the idea can be implemented in a secure mail application
together with S/MIME. We compare the DNS lookup mechanism with traditional
Directory Access Protocol based systems and identify weaknesses and strenghts.
We also discuss and suggest a solution to privacy threats that arise because of recent
security additions to the DNS, namely Secure DNS.

Säkerhet för nätverksapplikationer
med Domännamnssystemet

Sammanfattning

Vid design av säkra distribuerade system är hanteringen av kryptografiska nycklar
ett grundläggande problem. Publik-nyckel (PK) teknologi används ofta för att lösa
många av dessa problem. För att PK-teknik ska vara praktiskt tillämpbart i stora
system som t.ex. Internet krävs en certifikatsbibliotekstjänst som används för att
lokalisera och hämta publika nycklar. Den här rapporten beskriver hur den vanli-
ga namnuppslagningstjänsten, Domännamnssystemet (DNS), kan användas för att
lösa det problemet. Vi visar hur DNS kan användas för att åstadkomma säker epost
tillsammans med S/MIME. Vi jämför DNS med den traditionella bibliotekstjänsten
som är baserad på Directory Access Protocol och identifierar fördelar och nackde-
lar. Avslutningsvis diskuterar vi, och föreslår en lösning på, hot mot personlig in-
tegritet; hot som är en följd av en nyligen förslagen säkerhetsutökning som kallas
Secure DNS.

iii

iv

Preface

This thesis was presented to Stockholm University as partial fulfillment of the re-
quirements for the degree of Master of Science in Computing Science.

The work was performed at RSA Security in Stockholm, Sweden. Supervisor at
RSA Security was Magnus Nyström. Mikael Goldmann was supervisor at the De-
partment of Numerical Analysis and Computer Science (NADA). Examiner was
Stefan Arnborg.

v

vi

Acknowledgements

I would like to thank my supervisors, Magnus Nyström and Mikael Goldmann, for
advice and comments on my work, and their suggestions that helped to improve
this report. All errors are of course my own.

The idea to use public key encryption of owner names in the Secure DNS “NO”
record was suggested by Jonas Holmerin (the idea later developed into hashing).

This report was written in LATEX [61] and illustrated with Dia [62]. Also, BibTeX,
Emacs, ImageMagick and other free and open source software were instrumental
to the creation of this document.

vii

viii

Contents

Preface v

Acknowledgements vii

Contents ix

List of Figures xii

List of Tables xiii

1 Introduction 1
1.1 Outline of the Report . 2

2 Background 3
2.1 Cryptography . 3
2.2 Internet and the Domain Name System 9
2.3 Public Key Infrastructure . 11
2.4 Domain Name System . 13
2.5 Electronic Messaging . 14

2.5.1 Secure Electronic Messaging 14
2.5.2 Multipurpose Internet Mail Extension 15
2.5.3 Privacy Enhanced Mail 16
2.5.4 Pretty Good Privacy . 17
2.5.5 Security Multiparts for MIME 17
2.5.6 Secure MIME . 17

3 Use Cases 19
3.1 Email Client . 19
3.2 Certificate Publishing . 24

4 LDAP and DNS as Certificate Directories 25
4.1 Why Focus on LDAP and DNS? 25

4.1.1 How the Certificates are Used 26
4.1.2 How the Directory is Used 26

ix

4.2 Locating Certificates . 26
4.2.1 Certificate Naming . 27
4.2.2 Lightweight Directory Access Protocol 29
4.2.3 Domain Name System 30

4.3 Updating Certificates in a Directory 31
4.3.1 Updating in LDAP . 31
4.3.2 Updating in DNS . 32
4.3.3 Conclusions . 33

4.4 Performance and Overhead . 34
4.4.1 Caching in DNS and How it Affects Certificate Lookup . . 34
4.4.2 The Domain Name System Protocol 35
4.4.3 The Lightweight Directory Access Protocol 36
4.4.4 Round Trips . 37
4.4.5 Packet Size . 40
4.4.6 Computer Resource Utilization 42

5 DNS Security Considerations 45
5.1 Secure DNS . 46

5.1.1 Data Non-existence . 47
5.1.2 NXT Chaining . 49

5.2 Data Non-existence with Minimum Disclosure 50
5.3 Implementing the Idea in DNS 52

6 Conclusions 53

Bibliography 55

Index 60

Appendices 65

A NO Resource Records 65

B Sample Certificates 81

C Benchmarking Tool 89

x

List of Figures

2.1 Some basic cryptographic concepts 4
2.2 Simple key transfer . 5
2.3 Digital Signature . 6
2.4 A digital certificate . 7
2.5 Secure key transfer . 8
2.6 Brief example of the DNS hierarchy 10
2.7 Players of a PKI . 11
2.8 Message Handling System Model 15
2.9 The PEM Public Key Infrastructure 16

3.1 A sample message . 20
3.2 Selecting security functions from menu 20
3.3 Choosing the secure messaging technology to use 21
3.4 Select certificate source . 21
3.5 Select encryption key to use . 22
3.6 Query for more recipients . 22
3.7 The original message tagged for encryption 23
3.8 Encrypted S/MIME message . 23
3.9 Sample LDIF data . 24
3.10 Corresponding DNS data . 24

4.1 Example X.500 Directory . 28
4.2 Update Certificate . 31
4.3 DNS envelope . 35
4.4 LDAP packet, with some structures expanded 36
4.5 Round Trip between two entities 37
4.6 Setting up a TCP connection . 37
4.7 Tearing down a TCP connection 37
4.8 Round trips in a DNS Query over UDP 38
4.9 Round Trips in a DNS Query . 38
4.10 Round trips in a LDAP Query 39
4.11 Bytes required to transfer a certificate with a 1024 bit RSA key

with DNS and LDAP . 43
4.12 Queries per second to look up a certificate 44

xi

5.1 Naive data non-existence implementation 47
5.2 “NXT” Data-nonexistence implementation 50
5.3 Minimum information disclosure and data non-existence 51
5.4 Final example of how minimum information disclosure and data

non-existence would work using NO records 52

B.1 512 bit RSA certificate . 82
B.2 1024 bit RSA certificate . 83
B.3 2048 bit RSA certificate . 84
B.4 512 bit DSA certificate . 85
B.5 1024 bit DSA certificate . 86
B.6 VeriSign 1024 bit RSA certificate 87

xii

List of Tables

4.1 Update operations supported in DNS and LDAP 33
4.2 Authentication support in DNS and LDAP 33
4.3 Number of round trips for a query using DNS and LDAP 40
4.4 Typical certificate sizes . 40
4.5 Overhead of various layers . 41
4.6 Bytes required to transfer a certificate that contains a 1024 bit RSA

key with DNS and LDAP . 42
4.7 Queries per second to look up a certificate 43

5.1 Example of (partial) DNS information for a zone josefsson.org . . 49
5.2 Example of non-existence proof data for data in table 5.1 49
5.3 Example of non-existence proof data for data in table 5.1 51

xiii

xiv

Chapter 1

Introduction

Secure communication is an increasingly important application of the Internet.
Without secure communication many existing social functions cannot benefit from
modern technology. The primary example is commerce. The foundation of secure
communication is cryptography, which enables secure communication through the
use of keys. The management of these keys has proven to be a problem when the
technology is taken into use. So called public key cryptography solves several of
these problems, in particular it allows the keys to be transfered, in the form of a
certificate, through unprotected communication cannels.

The primary remaining problem in key management is a technical issue; namely
how to locate the certificate for a certain machine or person.

Some basic requirements on the facility used to locate the certificate can easily
be identified. It must be accessible everywhere. It should be practical, in the sense
that it should not be extremely expensive or cause administrative hassle, to work.
Preferably it should be distributed, because a central world-wide organization to
store all certificates is not feasible to implement. However the facility does not
need to be secure, altough if possible, it would create additional value.

So far our description is similar to how a facility for locating the address (in-
stead of certificate), for a certain machine or person on the Internet, would work.
The facility that implements this in today’s world is called the Domain Name Sys-
tem (DNS). Our description also resembles the directory service X.500, and its
more successful Internet protocol implementation which is called the Lightweight
Directory Access Protocol (LDAP).

This thesis compare the Domain Name System and the Lightweight Directory
Access Protocol for use as a certificate lookup service. In particular we focus on
the application of secure electronic mail, used to send messages between persons
using the Internet. We demonstrate that the idea of storing certificates in DNS
is practical by building a prototype. We also discuss and propose solutions to
a perceived privacy threat, introduced by recent additions to the Domain Name
System protocol.

1

CHAPTER 1. INTRODUCTION

1.1 Outline of the Report

The report is outlined as follows. In chapter 2, we give an overview of, and a
background to, Cryptography, Public Key Infrastructure (PKI), DNS and Secure
Messaging, which is used throughout this report. In chapter 3 we demonstrate
our implementation of a secure mail application and of a certificate publishing
application. In chapter 4 we compare LDAP and DNS for certificate locating and
retrieval purposes. In chapter 5 we discuss privacy threats due to Secure DNS and
present a possible remedy. In the final chapter we present our conclusions and
suggest topics for further investigations.

2

Chapter 2

Background

This chapter should give the reader an understanding of concepts used through-
out this report. We first describe the foundation for our work, cryptography, and
then describe the model we will be working in, namely Public Key Infrastructure
(PKI). We proceed by discussing the Domain Name System, and how it relates to
PKIs. We conclude by giving an overview of one major application of PKIs on the
Internet, namely Secure Messaging or more specifically, secure email.

2.1 Cryptography

Cryptography is a enabler of secure communication. The word comes from the
Greek words kryptos for hidden and graphein for writing. Cryptography is thus
the science (or art) of “secret writing”. The following is based on similar material
from [89], [29] and [26].

When talking about cryptography, we refer to senders and receivers wishing
to exchange messages or plaintext by exchanging ciphertext. It is assumed that
an eavesdropper reading ciphertext should not be able to extract corresponding
plaintext. This characteristic is called confidentiality. The process performed
by a sender to hide plaintext is called encryption, the reverse operation is called
decryption. These processes are often expressed as mathematic functions or com-
puting algorithms. The encryption and decryption algorithms together constitute
a cipher. Cipher algorithms intended for general use cannot be secret. So cannot
the eavesdropper just invoke the decryption process to extract plaintext? Ciphers
use keys to solve this problem. The key is used by the encryption process. A key
is one element out of a large set of elements, the key-space. Figure 2.1 illustrates
these concepts.

The usual mathematical description of ciphers uses E to the denote the encryp-
tion function and D to denote the decryption function. Plaintext is denoted byM
and ciphertext by C. If the encryption or decryption functions are key dependent
they are denoted by EK and DK respectively. Of course, E and D should have the
property DK (EK (M)) = M . Ciphers where the encryption and decryption keys

3

CHAPTER 2. BACKGROUND

Sender

Encryption
Plaintext

Decryption

Receiver

Original
plaintext

Cipher-
text

Network

Decryption
key

Encryption
key

Figure 2.1. Some basic cryptographic concepts.

are equal are called symmetric ciphers. Such ciphers have the property that sender
and receiver must have agreed on a certain key prior to the secure communication.
Such keys are called shared secret keys. A good cipher should have the property
that discovering the key, e.g., by inspecting ciphertext, should take an unreasonably
large amount of time or be very expensive.

In sending and receiving messages, parties are often interested in three prop-
erties of the communication other than confidentiality. Integrity means that the
sender and receiver should be able to verify that a message has not been modified
in transit. As a consequence, this means that an intruder should not be able to sub-
stitue a false message for a legitimate one without being detected. Authentication
means that the receiving party should be able to ascertain the origin of a message.
Nonrepudiation means that the sender should not be able to falsely deny that she
sent a message.

Using shared secret keys, it is possible to calculate Integrity check values
from a message to achieve integrity. The integrity check value should depend
on all bits of the plaintext. Should any bits of the message be changed between
the sender and recipient, the recipient would calculate a different integrity check
value. An adversary modifying a message might as well modify the check value
too, but without knowledge of the secret key she cannot duplicate the correct in-
tegrity check value. If the receiver correctly verifies the integrity check value, she
knows the message was generated by someone who knew the key. An impor-
tant application of integrity check values is Message Authentication Codes [47]
which use a symmetric block cipher (e.g., the Data Encryption Standard [91]). In-
tegrity check values are also known asMessage Integrity Check. Hash functions
can also be used to provide an integrity check value, this mechanism is called a
Hashed Message Authentication Code or a keyed hash function [25].

In [16] Diffie and Hellman introduced the concept of public key cryptography,
independently invented by Merkle [68]. Such ciphers are also known as asym-
metric ciphers. Unlike symmetric ciphers, a public key cipher uses two related
keys - one for encryption and one for decryption. In addition to the requirements
on symmetric keys, it should also be “infeasible” (be prohibitly expensive or take

4

2.1. CRYPTOGRAPHY

large amounts of time) to learn the decryption key given the encryption key and/or
ciphertext. The encryption (public) key can be made available to anyone who
wishes to securely communicate with an entity. There is no longer a need for prior
key arrangement between sender and receiver.

One of the first suggested and still most commonly used public key ciphers is
the RSA cipher [88]. The security of the RSA cipher depends on the difficulty of
finding the prime factorization of large integers. To describe how RSA works, we
begin by noting how keys are generated. Two large prime numbers p and q (of
roughly equal length) are chosen randomly. In practice, the size of p, q is recom-
mended to be on the order of 100 decimal (non-zero) digits, or larger. The encryp-
tion key e is now chosen, randomly, such that e and (p − 1)(q − 1) are relatively
prime. The decryption key d is calculated as a inverse of e modulo (p − 1)(q − 1),
in other words by solving ed ≡ 1 (mod (p − 1)(q − 1)) for d. Together e and n
are the public key, and d is the private key. A plaintext m is encrypted to ciphertext
c by simple modular exponentiation, c = me (mod n). Decryption is performed
by m = cd (mod n). This works since cd = (me)d = med = mk(p−1)(q−1)+1 =
mmk(p−1)(q−1) = { by Fermat’s small theorem } = m · 1 = m, all calculations
modulo n.

Alice Bob

Untrusted
Network

Figure 2.2. Simple key transfer. For symmetric keys, the communication must be pri-
vate, integrity protected and authenticated. For asymmetric keys, the communication
must be integrity protected and authenticated.

Public key ciphers place a large burden on users to somehow distribute these
public keys. The straight forward method, by directly contacting the receiver and
ask him for his key, is still possible. This is illustrated in figure 2.2. For symmetric
keys this communication must be private (no-one can read the key), be integrity
protected (no-one can modify the key) and authenticated (you know who you are
talking to). For asymmetric keys, you only need integrity and authentication. The
keys are, after all, public. In practice, this is a negligible advantage—current tech-
niques to guarantee integrity and authentication also require keying material. This
would create a chicken and egg problem. However, public key cryptography opens
up for other forms of key distribution. Before venturing into this field we need
more concepts to work with.

Written signatures are used as proof of authorship of a document, or at least
proof of agreement with a document, such as a contract. Several equivalent elec-
tronic methods have been suggested. A digital signature is a piece of data which

5

CHAPTER 2. BACKGROUND

accompanies a message. It is used to ascertain originator of message and the in-
tegrity of the message. Figure 2.3 illustrate how digital signatures are intended to
operate.

Sign

Plain-
text

Plain-
text

Originator’s
Private
Signature

Key

Transmitted
message

Plain-
text

Verify
(yes/no)

Originator’s
Public

Signature
Key

Signature
Verifies?

Figure 2.3. Digital Signature.

Some (but not all) public-key ciphers are able to operate as digital signature
algorithms. RSA is able to operate in an authentication mode to provide digital
signatures. The authentication mode is simply to use the private key for encryp-
tion and the public key for decryption, the inverse of regular use. This way, only
the originator is able to encrypt (sign) the message, and everyone that knows the
public key are able to decrypt (verify). To boost efficiency, digital signatures are
rarely calculated on the entire input document but rather on a one-way hash value
calculated from the document. Similar to ciphers, one-way hash functions are of-
ten expressed as mathematical functions or computing algorithms. One-way hash
functions are one-way in the sense that they should be fast to compute but difficult
to invert. In mathematical terms, calculating hash value h as h = H (m) for a hash
function H on a message m should be fast. But given h it should be infeasible to
compute any member of the set {m|m = H−1(h)}. h is uniformly distributed. Hash
functions used cryptographically, for digital signatures, should have two properties:

• It must be computationally infeasible to construct an input message that
hashes to a given digest.

• It must be computationally infeasible to construct two messages that hash to
the same digest.

Hash functions usually produce output of a fixed length, commonly a few hun-
dred bits. This is in contrast to documents, that may have arbitrary size. For RSA,
the hash value is encrypted using the private key, which generates the signature.
On the receiving end, the verification procedure is performed. The verification
procedure consists of computing the hash value of the input document and compar-
ing it with a decryption of the signature, using the public key of the sender. Again,

6

2.1. CRYPTOGRAPHY

not all public-key ciphers are able to operate in this way to achieve signing, but
we are satisfied in noting that other algorithms are able to achieve the same goals
using other methods.

In the previous discussion, we have avoided to define what we mean by “com-
putationally infeasible” or “hard”, this is the topic of many text books on complex-
ity theory and we refer to them (for example [37]).

Now the reader should have an understanding of techniques used to solve the
problem that motivated this digresssion; namely how to distribute public keys in a
secure fashion.

Public Key

Information about
owner and signer
(names, email
addresses etc)

Figure 2.4. A digital certificate: digitally signed information containing a public key
and some information related to that key.

Recall our discussion about direct key transfer between two entities from the
beginning of this section, also illustrated in the figure 2.2. Unless this communi-
cation is integrity protected and authenticated (and encrypted in the case of sym-
metric keys), an adversary might be able to intercept and replace the key. Then
Bob will believe the key he received belongs to Alice, and might use it to encrypt
sensitive information intended for Alice’s eyes only. This information might be
decrypted and read by the adversary since he replaced Alice’s key for his own. It
might also be re-encrypted (with Alice’s public key) and passed on to Alice, to
reduce the risk of getting caught. This form of attack is known as a man in the
middle attack. We will see that the use of public-key certificates is a practical
method to solve this problem.

In [58] Kohnfelder introduced the notion of public-key certificates. A public-
key certificate is a public key, digitally signed by a trustworthy entity. A certificate
usually contains information about the owner and the signer, such as names or
email addresses. Figure 2.4 illustrates this.

By having public keys digitally signed by a mutually trusted third party, all
three problems with distributing keys are solved: Protecting the key, maintaining
data integrity, and authenticating data. Since public-key technology is used, there
is no need to protect (encrypt) the key. The certificate is digitally signed, and thus
provides data integrity. By signing the certificate, it is later possible to authenticate
the data contained in the certificate (i.e., the public key). To authentiate a certifi-
cate, the knowledge of the public key of the trusted party is required. Since this

7

CHAPTER 2. BACKGROUND

mutually trusted third part can issues many certificates, an entity is able to strongly
trust the validity of many public keys by knowing and trusting one public key.

By using the concept of certificates and a trusted third party, Bob can get Al-
ice’s public key without requiring an integrity protected and authenticated channel
between Bob and Alice. Alice sends her certificate, issued by the trusted third
party, to Bob. Bob knows the trusted third party’s public key and is able to verify
the signature of the certificate. He is then able to trust that the public key he re-
ceived is correct and actually belongs to Alice. This is illustrated in figure 2.5. Of
course, the man in the middle attack can now target the communication between
the trusted third party and either Alice or Bob. Since this communication only
takes place when certificates are issued or renewed, special care could be taken to
protect that communication.

Alice Bob

Untrusted
Network

Trusted
Third
Party

TTP’s
public key

Figure 2.5. Secure key transfer. The key is actually a signed public key, a Certificate.

Using certificates also opens up for the possibility of removing the key transfer
between Alice and Bob completely! This is an important feature when secure
communication is being implemented between a large number of participants. This
is because none of Bob’s ability to trust the public key he receives now depends on
whether he is actually communicating with Alice or not. His ability to trust the key
depends solely upon his trust relationship with the trusted third party. This means
that Bob might actually be talking to a database that stores certificates for many
users, much like a phone book. Bob can use his trusted third party’s public key to
determine if he should trust a certificate or not.

Since the introduction of certificates, several standards have been suggested to
implement this idea. The preveiling format is X.509 Certificates, as standardized
by the International Standards Institute [11] in the late 1980’s. The format has
evolved, and has been profiled for use on the Internet by the Internet Engineering
Task Force1 (IETF). This profile is known as the Internet X.509 PKI (PKIX) pro-

1The IETF is a large open international community of network designers, operators, vendors, and

8

2.2. INTERNET AND THE DOMAIN NAME SYSTEM

file. Still, to benefit from using certificates in applications, the issue of determining
how the “phone book” should operate must be solved. This problem, and others,
are solved under the framework of a Public Key Infrastructure. This thesis stud-
ies how the Domain Name System, a protocol already widely used on the Internet,
can be used within a public key infrastructure to locate and retrieve certificates.

2.2 Internet and the Domain Name System

The Internet consists of loosely interconnected networks of computers located
around the world. Computers communicate with each other by exchanging packets
according to various protocols. Computers wishing to participate on the Internet
need to follow the protocols used by other members of the Internet. The lowest
level common protocol used on the Internet is named “Internet Protocol”, often
refered to as IP [82]. The addressing mechanism used by IP is similar to phone
numbers. All entities that communicate on the Internet must have an IP address.
An IP address may look like 195.42.214.244. Protocols are often layered on top of
each other, to provide more specialized functions. For example, IP does not guar-
antee delivery of packets between entities. For those applications that require guar-
anteed packet delivery another protocol exists, layered on top of IP, that provides
these functions. This protocol is known as Transmission Control Protocol (TCP)
[83]. So how can TCP provide guaranteed packet delivery when TCP only uses IP,
which does not provide guaranteed delivery? TCP accomplishes this by enumer-
ating and acknowledging each packet. Using retransmission-timers TCP detects
when acknowledgements are lost. If a packet (or acknowledgement) is lost, the
packet will be re-transmitted until an acknowledgment is received. Many popular
application protocols are layered on top of TCP. Examples include the Hypertext
Transfer Protocol (HTTP) [28] for Web Browsing, the Simple Mail Transfer Proto-
col (SMTP) [13] and the Internet Mail Access Protocol (IMAP) [12] for Electronic
Mail.

Using IP addresses to locate resources on the Internet has several problems.
One of the most important problems is that IP addresses are hard to remember for
humans. There is no obvious connection between real-world names of companies
or persons that can be used to find the IP address. Returning to our phone number
analogy, we observe that phone books often are used to collect phone numbers
ordered by other information. They can be ordered by company name, personal
names etc. If the same idea was used on the Internet, we would attach ordinary
names to machines. It also must be possible to somehow convert this name into the
actual IP address; this is the job for our Internet “phone book”.

This problem was solved in the middle of the 1980’s, and the solution is called
the “Domain Name System” or DNS. The DNS organizes names of machines in
a hierarchy. Universities may organize the names of their machines within a local

researchers concerned with the evolution of the Internet architecture and the smooth operation of the
Internet.

9

CHAPTER 2. BACKGROUND

Root

.org

.com

.se

rsasecurity.com

josefsson.org kth.se

Figure 2.6. Brief example of the DNS hierarchy.

hierarchy such as departments, and the university itself may be located within the
“educational hierarchy”. Top-level hierarchies of the Domain Name System in-
clude “Educational”, “Organizations”, “Companies”, “Millitary” and a hierarchy
for each country around the world, such as “Sweden”. The DNS uses shorter forms
for brevity, “edu” for educational, “mil” for millitary, “se” for Sweden etc. Figure
2.6 illustrates a few members of the DNS hierarchy.

Because names are easier to remember than IP addresses, the Domain Name
System hierarchy and the names stored in it are often used by application protocols—
such as web browsing and electronic mail.

This last observation is important, and combined with the flexibility of DNS,
is crucial to our work. Since the domain name hierarchy is used by many modern
electronic applications, there are several advantages to being able to store related
information about a domain name (such as a public key in the form of a certificate)
in DNS. To see this, consider a separate infrastructure for locating certificates. This
system must provide a global infrastructure, similar to how DNS works, so that it
is possible to look up information from everywhere without any special knowledge
of which server to query etc. Such attempts exist, and they often use their own
form of addressing mechanisms. The prominent example is the ISO X.500 initia-
tive. Now, if we wish to use another directory system with domain names (that
is the usual address mechanism of the Internet) we depend on the possibility and
success of locating and using domain names as an addressing mechanism within
the other directory system. We will see that this is a complicated issue, and that no
satisfactory solution exists to this date.

On the other hand, the Domain Name System provides the flexibility to allow
us to store any data attached to a domain name. For example, it can attach “certifi-
cate” data to a domain name in the “phone book”. If this is the case, we do not need
to involve another directory to locate and retrieve certificates. In this report we will
argue that storing application keying material, or certificates, in the Domain Name
System is a promising idea.

10

2.3. PUBLIC KEY INFRASTRUCTURE

2.3 Public Key Infrastructure

Public Key Infrastructures (PKI) consists of services required to make use of public-
key based technologies on a large scale. The first service of a PKI that comes to
mind is locating and retrieving certificates, but many other aspects constitute a
larger part of actual PKIs. Non-technical aspects such as legal considerations are
also a part of what makes up a PKI. We build on the concepts introduced in the last
chapter, and continue by introducing the entities of a PKI. They are illustrated in
figure 2.7.

CA

RA

RA

.

.

.

End Entity

End Entity

End Entity

.

.

.

.

.

. .
.
.

C
o
m
m
u
n
i
c
a
t
i
o
n

Certificate
generation, etc

Fetch
certs,
etc

DB

Figure 2.7. Players of a PKI.

• Certificate Authority
The certificate authority, or CA, is the centre of a PKI. It issues certificates
by signing public keys received from end entities together with information
about the identity of the key owner, and stores the result in a database. A
verification process is performed to make sure that the entity that applies for
a certificate is who she claims to be.

• Registration Authority
A registration authority (RA) is an optional component of a PKI. It takes
over many obligations of the certificate authority. It is used to separate less
security critical parts from a CA, to protect the critical parts in case of a secu-
rity incident in the non-critical parts. The CA continues to sign certificates,
but the registration authority may perform verification of user identities, cer-
tificate lookup and retrival etc.

• End entities
End entities are the “users” of a PKI. Certificates are issued to end entities,
and end entities communicate with each other securely using the certificates.
End entities normally store their own private keys.

11

CHAPTER 2. BACKGROUND

Some of the more important operations performed by the PKI entities include
the following:

• Key Generation
The keys used within a PKI could be created by any entity, but usually the
end entity creates it using some equipment. The private part of the key must
be kept protected, possibly by using some secure storage medium in the end
entity.

• Certificate Requests
After generating a key, an end entity usually requests a certificate to be issued
by the certificate authority. This is done by sending a message to the CA (or
the RA) containing the certificate request. The CA verifies the identity of
the end entity and signs the public key.

• Generating Certificates
After a successful certificate request, the certificate is created and stored with
the CA and sent back to the entity applying for the certificate, possibly via
the RA.

• Updating Certificates
Certificates usually have a limited validity period, for example one month.
Thus the operation of updating a certificate will be necessary on a regular
interval. This is normally initiated by the end entity.

• Revoking Certificates
The operation of revoking a certificate can be initiated by any of the play-
ers, depending on the reason for the revocation. End entities might revoke
their certificate if they accidently reveal their private key. Certificate and
registration authorities may revoke a certificate for various reasons, such as
the end entity not fulfilling the requirements to be certified by that certifi-
cate authority. Information about revoked certificates can be distributed in
so called Certificate Revocation Lists (CRLs). CRLs are signed lists of
revoked certificates. These lists are used by applications to verify that cer-
tificates are still valid. We will not consider the distribution or handling of
CRLs further in this report, based on arguments similar to those presented in
“Can we eliminate CRLs?” [87].

• Publishing Certificates in Directories
To be useful in securing communications, certificates are often stored in pub-
lic directories. These directories are used by end entities to look up and
retrieve certificates of other end entities with whom they wish to commu-
nicate. Usually a certificate authority (or a registration authority) provides
a directory service containing all certificates it has issued. However, end

12

2.4. DOMAIN NAME SYSTEM

entities may choose to publish their certificates in other directories as well.
Various directory technologies exist, and we will concentrate on two: The
Lightweight Directory Access Protocol and The Domain Name System.

2.4 Domain Name System

As mentioned, the DNS “phone book” looks like a hierarchical system. This is also
reflected in how the actual database which holds the information is implemented.
Instead of having a big database containing answers to all queries, DNS works by
delegating the responsibility, or “authority”, for each hierarchical component (i.e.,
a subtree of the DNS hierarchical tree, also called a “zone”) to the servers that
should be responsible for that component. These servers can further sub-delegate
authority, resulting in a distributed database based on a tree topology.

To see how this works, consider looking up some piece of data attached to a
DNS domain name. In our example we will look up the IP address attached to
the domain name www.nada.kth.se. We begin with a somewhat simplified de-
scription. A client that wishes to look up a name must know the address to the
“root” servers. The “root” servers are the servers located at the top of the DNS
tree.2 The client sends a query for www.nada.kth.se to the root server, and usually
the root server only knows who is responsible for the next sub-component in the
query. In our example, this means the root server is only able to tell the client the
addresses of the servers responsible for se. The client will now forward the same
query to the se servers, and in our example these servers do not know the answer
to the query either, but have delegated the authority over the kth.se zone to certain
servers and it informs the client of their addresses. The client repeats this proce-
dure, asking kth.se, and this time it receives addresses to the servers responsible for
nada.kth.se. As it happens, this server will know the correct answer and construct
a response and sends it to the client. The client has now received the IP address of
www.nada.kth.se.

In our example, we have made some simplifications. Specifically, if the DNS
system worked as we just described it is not difficult to see that the root servers
would receive an enormous amount of traffic. In practice this problem is solved
in two ways. First, the “clients” in our example will cache all answers it receives.
This means that once it has received the addresses for “se” from the root server it is
able to query these servers directly for addresses within the “se” zone in the future.3

Secondly, the “clients” are usually not applications or even individual workstations
but rather a server located close to the workstation which usually serves many
workstations. The server aggregates the DNS needs of many workstations in a
smaller environment, such as a department. This means the local server holds a

2Currently there are 13 root servers located around the world. Advanced clients measure the
round-trip time when sending queries to servers, and are thus able to select the closest server in the
network topology. This increases performance and decreases network traffic.

3Of course, caching introduce the problem of stale data. DNS solves this by attaching a “Time To
Live” value to each answer, indicating how many seconds the receiver is allowed to cache the data.

13

CHAPTER 2. BACKGROUND

cache for several workstations at once. Since usage patterns on workstations often
are quite similar this reduces traffic. Also, since the server is not re-started or turned
off as frequently as workstations often are, the cache will be more effective.

We will see in more detail what the actual protocol that implements this looks
like in section 4.4.2.

2.5 Electronic Messaging

Electronic Messaging is a conceptually well-known and well-understood applica-
tion. The diversity of existing electronic messaging clients is, not surprisingly,
very large. Many different classes of messaging exists, with many competeting
technologies in each class.

The classic example is Electronic Mail (or email). While there exist several
implementations such as X.400 and MEMO, the Internet standard for text mes-
sages [13] and its usual transport mechanism [84] is the dominating implementa-
tion. Other classes of messaging include Instant Messaging. Instant Messaging
is a real-time short message service between two entities, well-known applications
include the Short Message Service (SMS) on GSM Digital Mobile Phones, ICQ
[46] and America On Line’s AIM [2] on desktop computers. A variation of Instant
Messaging is Public Chat Groups, which is a real-time short message service
between several, often near-anonymous entities. The largest implementation of
Public Chat Groups is IRC [48]. Another class is Public Discussion Forums, with
the prominent example of Usenet [40], but still other implementations exist such
as Fidonet [27] and KOM [80].

The previous discussion of Electronic Messaging technologies is far from ex-
haustive. The intention is to give the reader a sense of the diversity that exists in
this field.

2.5.1 Secure Electronic Messaging

None of the previously mentioned messaging technologies has been designed with
strong security in mind. Other features are often thought to be of more importance
in the design phase. In order to accommodate professional use of messaging tech-
nology, security extensions are critical. Several security extensions for Internet
Mail have been proposed, such as PEM, MSP [17], (Open-)PGP, Security Mul-
tiparts for MIME, MOSS [14], PGP/MIME and S/MIME. Before we go on and
discuss some of these security extensions, we need to establish a vocabulary. It is
used throughout this report.

The terminology used when talking about messaging is due to the OSI X.400
Message Handling System Model [69], the following description is due to [29,
page 154] and is illustrated in figure 2.8. Messages originate from and are ulti-
mately received by Users, which may be people or mail-enabled application pro-
grams. A message has one Originator and one or more Recipients. A user is

14

2.5. ELECTRONIC MESSAGING

supported by software called a User Agent, which performs such tasks as prepar-
ing and submitting messages for its user, and receiving and preprocessing received
messages for its user. A User Agent may be a stand alone software application
(sometimes called aMailer), or it may be integrated into another application such
as a Web Browser. The message transfer backbone comprises systems calledMes-
sage Transfer Agents (MTAs). A message is submitted at an originating MTA,
which delivers it to a recipient user agent. MTAs may be store-and-forward mes-
sage switches of a given messaging technology, or they may be mail gateways
between different technologies.

Message

Originator

Recipient

Originating
MTA

Network

User Agent

User

User

Figure 2.8. Message Handling System Model.

2.5.2 Multipurpose Internet Mail Extension

Several Secure Electronic Mail proposals, and most of the successful ones, are
related to the Multipurpose Internet Mail Extensions (MIME). MIME is described
in the five-part standard suite [31] [32] [72] [33] and [30]. MIME is a framework
that extends the one-dimensional Internet Mail Message Format known as RFC
822 [13]. This traditional format has several drawbacks:

• It only allows for the U.S. character set.

• It does not allow for non-textual components, such as images, to be included
in mail messages.

• It does not allow for structured documents, such as a mail message with one
text part and one image part.

These concerns were the driving force behind development of MIME. MIME
has been a success. Many standards, some even unrelated to mail, uses parts of the
MIME standard. Examples include the Hypertext Transfer Protocol (HTTP) [7]
and Internet Mail Access Protocol (IMAP) [12].

15

CHAPTER 2. BACKGROUND

2.5.3 Privacy Enhanced Mail

The following overview of PEM is based on similar material from [29], [9], [26].
Privacy Enhanced Mail (PEM) was the first serious effort to secure Internet

mail. The Internet Resources Task Force (IRTF) Privacy and Security Research
Group (PSRG) did the initial design. The Internet Engineering Task Force (IETF)
PEM Working Group continued development for three years, resulting in a four-
part Proposed Internet Standard published in early 1993 [64] [56] [5] [55]. PEM
is a broad standard suite, it provides encryption, authentication, message integrity
and key management. PEM supports both symmetric and asymmetric (public-
key) key management schemes. PEM uses DES for encryption, MD2 or MD5 for
authentication and X.509v1 with RSA for public-key management. The standard
also allows for different suites of algorithms to be defined later. PEM is designed
to be taken into use selectively, by site or by user, without affecting other parts of
the network.

CA CA CACA CA

CA CAUsersUsers

Users

Users Users

Users

PCA

IPRA

PCA

Figure 2.9. The PEM Public Key Infrastructure.

Even though PEM is a landmark protocol in the development of secure messag-
ing, and is also generally considered to be of sound technical design [29], it did not
catch on. This was mainly due to two reasons. First, the message syntax that PEM
describes was incompatible with the widely successful MIME message syntax that
emerged at the same time [29, p. 156]. Secondly, the public-key management de-
scribed by PEM restricted the Certificate structure [9, p. 51]. Namely, it required a
top-down Certificate Authority (CA) approach. An entity, the Internet Policy Reg-
istration Authority (IPRA), establishes global certification policies by certifying
Policy Certification Authorities (PCAs). Each PCA in turn certifies CAs that will
follow the certificate policy of that PCA. This hierarchy is illustrated in figure 2.9.
A strict hierarchical approach works well in strict hierarchical organizations, but
this is a feature that the Internet lacks. Two other complications with the public-key
management approach also turned out to cause problems. First, PEM required the
IPRA to maintain a database of unique Distinguished Name (DN), that all PCAs
were supposed to query before certifying Certificate Authorities. Secondly, the

16

2.5. ELECTRONIC MESSAGING

X.509 version 1 certificate format does not contain fields for certificate policies,
forcing all applications to be aware of PCA policies by other means, which PEM
did not provide for.

2.5.4 Pretty Good Privacy

Pretty Good Privacy (PGP) was developed during the same period as PEM, in the
early 1990’s. PGP was originally designed for securing Internet mail. PGP shares
most technical features, such as digital signatures and public-key based encryption,
with PEM. Like PEM it uses a proprietary, non-MIME-compatible, message format
[3]. However, later MIME-compatible variations have evolved [22]. PGP’s main
difference from other proposals is its key management system. It does not use
X.509 Certificates, but rather a proprietary syntax. Also, it uses a non-hierarchical
certification model known as “web of trust”. We will not study PGP further, a good
reference is [98], and an account of PGP History can be found in [4].

2.5.5 Security Multiparts for MIME

Security Multiparts for MIME [35] is a simple framework for adding security en-
hancement to Internet Email by using MIME. Basicly, it describes how you com-
bine a text message (or other data) with cryptographic information. It does not
describe the cryptographic operations themselves, that is left for other specifica-
tions. It has gained wide popularity. Security Multiparts for MIME is used by
at least three protocols; MOSS [14], PGP/MIME [22] and S/MIME, of which the
latter two have been successfully deployed and are widely used today.

2.5.6 Secure MIME

Secure MIME (S/MIME) [86] [85] combines the previously mentioned Security
Multiparts for MIME framework with the Cryptographic Message Syntax (CMS)
[44] standard. CMS is derived from the Public-Key Cryptographic Standards 7
(PKCS#7) [60]. The differences between PKCS #7 and CMS are minor. Added
features to CMS include support for key agreement techniques. As stated in the
previous section, the Security Multipart framework does not define cryptographic
operations or specific cryptographic message syntax. S/MIME supports both signed
and encrypted messages. We now turn to a brief overview of the CMS standard be-
cause an S/MIME messages essentially is a CMS messages.

CMS defines a syntax for data that has cryptographic operations applied to it.
Cryptographic operations include digital signatures and encryption. The syntax is
described using OSI Abstract Syntax Notation One (ASN.1) [49], a language often
used to describe data structures. The details of how ASN.1 works are not essential
here, a good introduction to ASN.1 can be found in [54]. Returning to CMS,
it describes how plain text (a file or network stream) is wrapped into data, after
signing or encryption operations have been performed. The data structure contains

17

CHAPTER 2. BACKGROUND

information used by the receiver to understand what treatment the data has been
subjected to. This enables the receiver to restore the original data, and to properly
verify or decrypt the content. The CMS format is compatible with the message
format used in PEM, in the sense that CMS messages can be converted from and
to PEM messages without any cryptographic operations. CMS does not require
a certain key management procedure or a special security infrastructure. Further,
CMS can be used either inside a public key infrastructure, or in an infrastructure
using shared symmetric keys.

18

Chapter 3

Use Cases

This chapter describe important use cases when certificates stored in DNS can be
used, and where DNS provides additional advantages over traditional certificate
directories such as LDAP.

3.1 Email Client

Electronic mail on the Internet has been an important form of communication for
some years now. Various methods of securing electronic mail have been suggested
(see our overview in section 2.5). One of the solutions that has seen commercial
success is S/MIME. A major problem in using S/MIME to secure mail is locating
certificates. Clients often support several methods to locate certificates, e.g., from
LDAP servers or from white-pages on the Internet. Most of these services have the
drawback of requiring configuration by the user; configuration of the LDAP server
hostname, the address to the whitepage service, of the LDAP base objects, etc.

DNS provides a solution to this problem. DNS is already used as a ubiquitous
lookup service to look up mail exchangers and their IP addresses, something all
email application need to do. Thus DNS is already an integral part of email appli-
cations today. The costs of adding support in the application to be able to look up
other data are small. And unlike LDAP, additional configuration by the user will
not be required.

We have implemented S/MIME functionality in a email client, with certificate
fetching from DNS, as a proof of concept. The implementation is based on the ex-
tensible mail client Gnus [90]. The following figures illustrate how a user “Some
One” might send an encrypted email to “simon@josefsson.org”. Unlike other ap-
plications, no prior configuration of the recipient’s certificate, of LDAP servers, or
similar parameters are required. Signing is possible, but less complicated, so we
omit that description.

19

CHAPTER 3. USE CASES

Figure 3.1 shows a message window. The user has typed in the recipient’s
address and some text.

Figure 3.1. A sample message.

Now the user wishes to encrypt this message, figure 3.2 shows how the encryp-
tion function is chosen from the menu.

Figure 3.2. Selecting security functions from menu.

The next step, shown in figure 3.3, illustrates how a user selects what encryp-
tion technology to use. One of the few alternatives to S/MIME that are in current

20

3.1. EMAIL CLIENT

use, is PGP/MIME. It might be available as an option here. This step might be
removed for novice users.

Figure 3.3. Choosing the secure messaging technology to use.

Now the client needs to locate public keys used to encrypt the message. There
might be a number of sources available: DNS, an LDAP server, a local file, etc.
See figure 3.4. This step might also be removed for novice users, by making the
client automatically try various sources in order. First try to locate the certificate
in DNS, then from preconfigured LDAP servers (if any), then query the user for a
filename, etc.

Figure 3.4. Select certificate source.

After selecting DNS as the source for certificates, it is possible to chose whom
the message should be encrypted to. Normally, you would encrypt a message to
the same person you are sending it to, but there may be situations when you need
to use a middle-man. The intended receiver of the encrypted message is queried
by the client in figure 3.5. This is also a somewhat esoteric feature. It should be

21

CHAPTER 3. USE CASES

removed for novice users. The recipient of the mail should be used as the receiver
of the encrypted message.

Figure 3.5. Select encryption key to use.

A message can be encrypted to more than one person, and the client queries
the user if she wishes to add more recipients in figure 3.6. Likewise, this could be
removed for novice users, only using whatever recipients are in the message.

Figure 3.6. Query for more recipients.

By answering “n” (for “no”) to the previous question, the client is finished
and inserts tags into the message. The mark-up language is called MIME Meta
Language (MML), and is used to mark-up MIME articles. It is an SGML/XML
based language. Figure 3.7 shows MML tags added to the message.

22

3.1. EMAIL CLIENT

Figure 3.7. The original message tagged for encryption.

The article is now ready to be sent, encrypted. To illustrate what the encrypted
content looks like, it is possible to preview the message. This is done by selecting
“Preview” from the menu shown in figure 3.2. The resulting display is shown in
figure 3.8.

Figure 3.8. Encrypted S/MIME message.

23

CHAPTER 3. USE CASES

3.2 Certificate Publishing

The previous email client retrieved certificates from DNS to secure email. Of
course, someone needs to publish certificates in DNS for this to be possible. Tra-
ditionally, publishing has often been a service of the trusted third party, where the
CA provides an LDAP interface to look up certificates (only issued by that CA,
naturally). To publish certificates in DNS we have developed a proof-of-concept
PKI utility with the following features.

• Generate cryptographic keys (e.g., RSA), generate PKIX certificate requests
and sign PKIX certificates.

• Convert PKIX certificates into the LDAP Data Interchange Format (LDIF).
This format is used to represent LDAP data in ASCII format.

• Convert data in LDIF format to the ASCII representation of DNS CERT
resource records. This data is read by DNS servers.

This allowed us to experiment with the various elements of a PKI, and specif-
ically to experiment with storing PKIX certificates in DNS. Data in DNS is stored
in text files using a special syntax, these files are called “zone files”. The syntax
is a simple textual encoding of the various elements in the DNS protocol (see sec-
tion 4.4.2). To illustrate how a certificate in LDIF format, figure 3.9, is converted
into a DNS resource records for storage in a DNS zone file, we show the output
in figure 3.10. The process to convert the data does not require any cryptographic
operations, only a Base 64 [51] decoding, insertion of a identifying byte sequence
[21, section 2.3], and a Base 64 encoding. One of the three integers in the DNS
figure are used to identify the data as being a PKIX certificate (the other two are
not used).

dn: cn=User 0, dc=josefsson, dc=org
cn: User 0
objectClass: pkiUser
mail: user0@josefsson.org
userCertificate;binary:: MIICAzCCAa2gAwIBAgIBATANBgkqhkiG9w...

Figure 3.9. Sample LDIF data.

user0.josefsson.org. IN CERT 1 0 0 A1UEJDCCAgMwggGtoAMCAQIC...

Figure 3.10. Corresponding DNS data.

24

Chapter 4

LDAP and DNS as
Certificate Directories

This chapter extensively compare the model and implementation of the LDAP and
the DNS, for use as a certificate directory.

4.1 Why Focus on LDAP and DNS?

LDAP and DNS are not the only solutions available. We first motivate our decision
to compare these two. Our study concentrates on the use of PKIs in global, open
network such as the Internet. Our basic needs are to be able to, interactively or
automatically, look up application keying material or certificates using email ad-
dresses or hostnames as search keys. We do not need any additional cryptographic
or security operations in the lookup service. Usually not even complex search capa-
bilities are needed. Alternative protocols such as HTTP and FTP [45] do not meet
our first requirement. However, both LDAP and DNS can meet this requirement.

Another way to see why LDAP and DNS are the two most relevant choices
to consider is by looking at the currently most used certificate implementation on
the Internet, the X.509-derived PKIX. X.509 certificates were designed to be used
with the X.500 directory service. LDAP can be seen as “X.500 for the Internet”. It
is based on the X.500 protocol and the X.500 directory service model, but updated
for use in the Internet. Thus LDAP is a good candidate for our study. X.509
certificates are often used by Internet hosts and Internet email users. DNS, via its
security extensions, tries to solve similar goals, e.g., how to attach a public key
to a host or email user. However, the security extensions of DNS have not been
as successful as X.509 certificates for this purpose to this date. Thus, since X.509
certificates are used by entities addressed in the DNSmodel, we chose to study how
to distribute the certificates through the same system. It is an appealing thought to
combine a successful certificate format (X.509) with a less successful directory
service (X.500), with a successful name lookup service (DNS) with a to this date
rarely adopted security service (Secure DNS).

25

CHAPTER 4. LDAP AND DNS AS CERTIFICATE DIRECTORIES

4.1.1 How the Certificates are Used

Certificates may be used in very different environments, from proprietary solutions
within small companies with a handful of entities that need a security service, to
world wide networks consisting of a multitude of protocols and applications with-
out any organization in full control of everything. Different environments place
different restrictions on what services are expected and needed. The environments
we consider share the following characteristics:

• Certificates will be looked up frequently when needed, as opposed to being
stored at clients. Thus protocol considerations such as size and overhead
become important. (This is especially true for mobile applications.)

• The directory services should support identifying a certificate by using In-
ternet addresses such as email addresses. This is in contrast with the world
X.509 was developed for, where the messaging system used the same ad-
dressing scheme as the X.509 certificates.

• Certificate extensions need to be documented and well known, to work in a
open network.

We see that PKIX certificates stored in LDAP or DNS systems fulfill our needs.

4.1.2 How the Directory is Used

Just like certificates, directories can be used in a variety of ways. Again, in open
networks certain characteristics are interesting and others are not. For example,
being able to locate and retrieve a certificate for a given email address is very
important. Being able to list certificates for people named Adam is not very inter-
esting for two reasons. First, it can be abused to collect information. Second, it
does not scale; there are millions of Adams out there. More complex queries are,
where deemed necessary at all, better handled by more specialized agents in local
environments that need them (e.g., a company wide phone book).

Conclusion 1 The primary use of the directory services we study is fetching one
certificate at a time. The queries consist of a complete email address, a domain
name, a URL etc, rather than more complex queries.

Even though one of our protocols, LDAP, provides much more complex direc-
tory operations than DNS, we will not consider most of them for this reason. Both
DNS and LDAP satisfy our needs here as well.

4.2 Locating Certificates

Perhaps the most important service of a Public Key Infrastructures in open net-
works (such as the Internet) is locating certificates. The problem is easy to un-
derstand; if you want to send encrypted email to kalle@josefsson.org, how would

26

4.2. LOCATING CERTIFICATES

you get the keying material (his certificate)? If you want to establish a secure IP
connection to www.seb.se using PKIX Certificates, how would you get their cer-
tificate?

There is no single generic solution to this problem today. One widespread
solution for the email case, are large “white-pages” accessible through the world
wide web [97] [92] [75]. A whitepage service is a centrally controlled directory of
information, much like a phone book. Adding, deleting and updating information
is done by contacting the service provider. This approach lacks several important
features though, including:

• Up-to-date information

Since organizations are not in direct control of their own data, there will be
a delay when data is changed.

• Data integrity

Most white-page services do not provide any means to protect the integrity
of data. This means that it might be possible for an adversary to modify data
at the white-page service, or in transit to or from the white-page service.

• Data origin authentication

Most white-page services lack guarantees of the origin of data. Thus you do
not know if the information you learn about X is what X, and no-one else,
actually wants to have published.

• Administrative requirements

For security related material, many organizations would prefer to be in con-
trol of what kind of information is published, and not to rely on an external
partner.

This makes whitepage services unsuitable for storage of security sensitive in-
formation, such as certificates. Some of these, and other, problems can be solved
by using directory technologies such as LDAP and DNS. However, before data can
be located using these protocols, we must have a mean to identify data. The next
section discusses this issue.

4.2.1 Certificate Naming

PKIX certificates are based on X.509 certificates. X.509 certificates were devel-
oped to secure X.500 directory systems. However, these certificates are not re-
stricted for use only within the X.500 directory system. This is fortunate, as the
X.500 directory system itself has not been successful (at least compared to in-
formation stored on the Internet). PKIX is an effort to make the original X.509
certificate more suitable for use on the Internet. Since X.509 defines an identity

27

CHAPTER 4. LDAP AND DNS AS CERTIFICATE DIRECTORIES

based certificate1 these certificates must include names of entities. Entities include
certificate owners and certificate issuers. Version 1 and 2 of X.509 use X.500
names exclusively to identify these entities. An understanding of names used in
X.509 certificates thus requires a basic understanding of the X.500 directory ser-
vice, which we now present.

The X.500 directory is much like a telephone directory. Given a name, you
can find information stored under this name. Data in an X.500 directory consists
of a set of entries each having an unambiguous Distinguished name (DN). Each
entry represents a real-world object, such as a person, an organization, a computer,
or a nation. The directory entries consist of attributes that have a type and one
or more values. An entry can contain several attributes, such as phone number
and addresses. Types are often abbreviated, “C” for country, “O” for organiza-
tion, “CN” for common name, etc. All entries are stored in a tree-like structure
called the Directory Information Tree (DIT), where each level in the hierarchy
can introduce a Relative Distinguished name that, when combined, form the Dis-
tinguished name. Figure 4.1 illustrate these concepts.

Root

USA
Sweden

RSA SecurityKTH

Simon
Josefson

RDN:
C=Sweden

RDN:
O=RSA
Security

RDN:
CN=Simon
Josefsson

Distinguished Name:
DN = { C=Sweden,
O=RSA Security,
CN=Simon Josefsson}

Attributes:

Tel. +46-8-7250914
Email. sjosefsson@rsasecurity.com

Figure 4.1. Example X.500 Directory.

1Other kinds of PKIs that are not identity based exists. SDSI and SPKI are efforts for creating
“credential based” public key infrastructures.

28

4.2. LOCATING CERTIFICATES

This naming standard has prevailed even in current PKIX certificates. This is
unfortunate, since most modern applications never use X.500 names or X.500 tech-
nology but rather internet names when addressing objects. By “Internet names”
we mean IP addresses (130.237.72.201), domain names (www.kth.se), email ad-
dresses (someone@kth.se), URLs and similar names. However, X.509 version 3
certificates allow for “alternative” names in addition to X.500 names. This new
standard defines how IP addresses, domain names, email addresses, URLs etc can
be stored as names in certificates. This naming complexity can of course cause
problems when certificate lookups are implemented in internet applications. If
someone@kth.se is not used to locate a certificate for sending mail to some-
one@kth.se, how do I find out what should be used for locating the certificate?

4.2.2 Lightweight Directory Access Protocol

LDAP is closely related to the X.500 model, and the Directory Access Protocol
(DAP, the “L” in LDAP stands for Lightweight). LDAP is targetted for use on the
Internet though. However, LDAP does not provide the global infrastructure that
DAP was intended to operate in. To see how this is a serious problem, consider
that we only replace the problem of locating certificates by locating the LDAP
server! A number of techniques for solving that problem exist [42]:

• Well known DNS alias

One solution is to use a common and well-known domain name for LDAP
servers [39]. When an application is searching for a certificate for kalle@jos
efsson.org the application contacts ldap.josefsson.org and looks up the cer-
tificate. Of course, this scheme relies on DNS to work.

• Using Location of service DNS Records

This is a recent idea that also relies on DNS, but in a different way than the
previous idea. Instead of using “well known names” as the previous idea,
it uses the concept of “well known services” which is more robust. A well
known service is “LDAP”, “HTTP” or similar. It is possible to look up the
well known services (e.g., the service “LDAP”) for a domain, in order to find
the server name [38]. This information is also stored in DNS. To illustrate,
a client asks the josefsson.org domain server “Give me the name of your
LDAP servers” and contact server hostnames are pointed out by the answer.
In short, a layer of indirection is added.

• LDAP Referrals

LDAP version 3 allows LDAP servers to re-direct clients to other LDAP
servers, based on the query [96]. This is similar to the previous idea in that
it uses indirection, but it does not require other protocols than LDAP itself.

29

CHAPTER 4. LDAP AND DNS AS CERTIFICATE DIRECTORIES

• Client Configuration
The simplest solution is to require administrators to configure applications to
use the “correct” LDAP server. This is prone to errors and does not work well
when the number of servers grows. A better approach might be to combine
this approach with the previous, LDAP referrals.

We should also note that LDAP uses X.500 attributes when looking up data.
Fortunately, common Internet names (email addresses, domain names, etc) have
well defined X.500 types so this is not a serious problem.

4.2.3 Domain Name System

Using DNS to store certificates is an appealing method. DNS is already an integral
part of practically all computers on the Internet, used to look up addresses of World
Wide Web sites, of mail servers for email, etc. Thus there is no need to introduce
new technology that users (and applications) everywhere will have to adopt to be
able to look up certificates. Also, the DNS protocol is more lightweight than LDAP
(see section 4.4).

We should mention two serious drawbacks of DNS compared to LDAP as a
certificate query protocol. However, both of these drawbacks might be considered
as advantages in the scenario we are interested in, we include some rationale for
this below.

• No advanced search functions
We have discussed this earlier; searching for people named “Adam” is not
productive on a global scale and may even open up for abuses.

• Inability to provide different answer sets in response to different query
sources

The reason DNS cannot provide this functionality is that it is designed to
contain public information without any access control. Thus this argument is
moot, since the intended use of directories we are interested in are public by
assumption. The ability to restrict access to resources would harm Internet
wide usage of the system for certificate look up.

Both issues stem from DNS being a less complex protocol than LDAP.

4.2.3.1 Internal DNS and PKI hosting

We should mention two specialized uses of DNS as a certificate directory.

• Internal DNS
It is possible to set up a private DNS infrastructure within a company. This is
known as an Internal DNS. All of the protocol benefits (small overhead, low

30

4.3. UPDATING CERTIFICATES IN A DIRECTORY

latency, etc) remain, but the infrastructure of the Internet DNS is lost. Our
study is intended towards the use of DNS as a certificate directory in open
networks, so we will not discuss this kind of operation further.

• PKI Hosting

Certain organizations may not want to handle the administrative burden of
maintaining a certificate directory. Instead, they may purchase this service
from a third party. This is possible to support with DNS, since it supports
cross-domain aliases. As an example, consider an alias for the DNS do-
main jas.nada.kth.se that points at jas.nada.kth.se.trustedthirdparty.com.
Since this mostly is an operational policy decision, we are satisfied with not-
ing that this is possible.

4.3 Updating Certificates in a Directory

Something related to looking up certificates from a directory, is to update certifi-
cates in a directory. This is illustrated in figure 4.2. Both LDAP and DNS provide
this functionality.

Certificate
Directory

Certificate

User

New Cert

Figure 4.2. Update Certificate.

However, neither LDAP nor DNS are primarily designed to store certificates.
As a consequence, neither of them supports the cryptographically “natural” way of
authenticating a certificate update: Proving that you posses the private key, corre-
sponding to the public key in the certificate, allows you to update the certificate.
Rather, both LDAP and DNS use other authentication mechanisms. The following
sections describe how updating works in DNS and LDAP, focusing on authentica-
tion of updates.

4.3.1 Updating in LDAP

LDAP supports addition, deletion, modification, and renaming of entries. Authen-
tication is performed, in LDAP version 2, by means of clear text passwords or
Kerberos [70]. The Secure Socket Layer (SSL) [43] [34] is often used to protect

31

CHAPTER 4. LDAP AND DNS AS CERTIFICATE DIRECTORIES

clear text passwords during transit. LDAP version 3 supports an extensible authen-
tication framework called Simple Authentication and Security Layer (SASL) [73].
This is a successful security framework, used by other protocols such as IMAP4
[12] and POP3 [74]. It supports several authentication methods, which are more
secure than password based schemes.

4.3.2 Updating in DNS

Updating data in DNS has traditionally only been done by manual editing of static
“zone files” located at each DNS server. This works well when the frequency of
changes is fairly low. If the frequency of changes increases, it can sometimes be
solved by other means. One solution is to store data in generic databases. The
information can be updated in the database, and trigger automatic generation of
zone files.

Simply put, the DNS protocol was not designed for remote data updates. Re-
cently, in 1997, a standard was published called “Dynamic DNS” [93]. It made
updating possible within the DNS protocol. Dynamic DNS supports addition, dele-
tion and modification of entries. Our concern here is how the updates are authenti-
cated.

“Dynamic DNS” assumes that authentication should be handled by other means
(such as IPSEC), or by a security framework described in [19]. The IPSEC case is
not interesting to us, as we wish to study DNS itself. The other alternative proved
to be a failure after implementation experience. Thus, some new ideas had to be
developed. Today, two solutions exist to authenticate DNS updates:

• Secure DNS Transaction and Request Authentication
This standard, known informally as SIG(0), uses public keys stored in DNS
to accomplish authentication of data. Data is digitally signed with a private
key that has a corresponding public key stored in DNS. The digital signature
is sent together with the data, and the remote system retrieves the public
key from DNS and verifies the signature. This specification is as part of the
Secure DNS specification [20], later updated by [1].

• Secret Key Transaction Authentication
Transaction signatures (TSIG) [94] do not mandate any specific cryptographic
operations, but is used to transport any kind of authentication data. It is in-
tended to work with a variety of algorithms. One of the reason behind de-
veloping transaction signatures was that SIG(0) requires computationally ex-
pensive public-key operations and complex authentication logic. Transaction
signatures, on the other hand, use message authentication codes (MACs).
Currently two specifications make use of transaction signatures:
– Hashed Message Authentication with MD5 (HMAC-MD5)
This is a simple algorithm to calculate message authentication codes.
It uses shared preconfigured symmetric keys. [59]

32

4.3. UPDATING CERTIFICATES IN A DIRECTORY

– GSS Algorithm for TSIG
This uses the extensible security framework of GSS-API [65] to per-
form message authentication. It establish shared secret keys that are
used temporarily. GSS is a security framework, often used in com-
bination with Kerberos [70], which provides security services such as
privacy and integrity. It enables DNS updates to be securely updated
using an already installed security infrastructure.

4.3.3 Conclusions

LDAP is without question the most flexible protocol when it comes to updating
data and authenticating updates. In table 4.1 we list supported operations in DNS
and LDAP. It should be noted that renaming is not an essential function as it can
be emulated by deleting a record and adding it by another name.

DNS LDAP
Add Yes Yes
Delete Yes Yes
Modify Yes Yes
Rename No Yes

Table 4.1. Update operations supported in DNS and LDAP.

Support for commonly used authentication methods in DNS and LDAP are
shown in table 4.2. Clearly, authentication in LDAP version 3 is more com-
plete than in DNS. (The authentication methods are Kerberos [70] GSSAPI [65],
HMAC-MD5 [59] CRAM-MD5 [57], DIGEST-MD5 [63], RSA SecurID [78], and
PKIX/TLS [15] [95].)

DNS LDAP
Kerberos Yes, GSSAPI Yes, SASL
CRAM/HMAC-MD5 Yes, native Yes, SASL
DIGEST-MD5 No Yes, SASL
RSA SecurID No Yes, SASL
PKIX (TLS) No Yes, SASL

Table 4.2. Authentication support in DNS and LDAP.

33

CHAPTER 4. LDAP AND DNS AS CERTIFICATE DIRECTORIES

4.4 Performance and Overhead

Looking up and retrieving certificates over a network will of course have a im-
pact on both network and servers involved. In this section we will study the DNS
and LDAP protocols. After a description of the protocols, we proceed with theo-
retical discussions of three different aspects of performance. The discussions are
illustrated with real-world benchmarks.

The three different measurements we considered to be of importance are:

• Network latency: Number of round trips.

• Network bandwidth: Packet size.

• Overall performance: Queries per second.

Before we begin, we wish to make a comment about the inherent caching in
the Domain Name System.

4.4.1 Caching in DNS and How it Affects Certificate Lookup

The nature of DNS, being a caching distributed database, makes both measuring
and predicting real-world numbers difficult. To be able to make good predic-
tions, one would need to simulate a network consisting of, say, a hundred thousand
servers and millions of clients. Clients and servers are connected by different types
of networks, so different latencies and bandwidth would need to be simulated. This
is not trivial. Instead of simulating a network, one can measure performance on a
real network though, one such study is presented in [53].

In our DNS benchmark we will limit ourselves to studying one single server,
connected to several clients. This is not without justification. An organization set-
ting up a DNS environment is concerned with how their own server is performing.
If we disregard caching in DNS, our comparison between DNS and LDAP would
be on equal terms. We must consider caching though, since it is a key component of
DNS. So, how much does it affect performance? First, at least it does not degrade
performance. This means our results for DNS will reflect a worst case, while our
LDAP results reflect the normal case. The discrepancy between our benchmark
and the real world thus depends on how large the impact of caching is. We can
make some conjectures about this, since the caching mechanism is well-defined.
The main application we focus on, electronic mail, is such that the time between
lookups is fairly long. You usually do not send more than a few messages to an
individual per day. The size of these savings are thus only a small multiple of the
differences in latency and bandwidth between the remote, official, server and your
local, caching, server. For end users, the savings are hardly noticeable compared
to the time to send the entire message. All in all, by studying the behavior of one
DNS server we get a “fair” comparison between LDAP and DNS by ignoring the
more complex issues of the whole system.

34

4.4. PERFORMANCE AND OVERHEAD

4.4.2 The Domain Name System Protocol

The DNS protocol is designed to be compact and simple. It runs over a datagram
transport service, and does not require it to be reliable (e.g., DNS handle packet
loss and packet size limits internally). The datagram service normally used is the
Internet Protocol User Datagram Protocol (IP/UDP). UDP packets have a max-
imum size in practice, and the Internet Protocol Transmission Control Protocol
(IP/TCP) is used as a fall-back when the maximum UDP packet size is exceeded.
The protocol is binary, unlike many other Internet protocols that are text based.
The binary encoding is used for compactness.

Header
Question
Answer

Authority
Additional

 Packet ID
Query / Response

N.o. Question Entries
N.o. Answer Entries

N.o. Authority Entries

Question Name
Question Type
Question Class

Name
Type
Class

Time To Live
Length of data

Data

.

.

.

Figure 4.3. DNS envelope.

The DNS protocol uses the same envelope for all communication. The enve-
lope is illustrated in figure 4.3. The envelope’s first member, the header, is present
in all packets and contains control information. Besides packet identity and packet
length information, it contains information on whether the packet is a query or a
response; if the packet is truncated (indicating that the question should be re-sent
via TCP); etc. For query packets, the “question” field is present (e.g., has non-
zero size) and the remaining fields are empty. For “responses” the question field
is empty and remaining fields contains data. The “question” field, if present, con-
tains a domain name (ASCII string), a domain type (integer) and a domain class
(integer). The remaining three sections have the same structure, and contain Re-
source Records (RRs). Resource Records consists of a domain name, a type and a

35

CHAPTER 4. LDAP AND DNS AS CERTIFICATE DIRECTORIES

class, together with the corresponding data. (For comparison, the question section
contains all fields except the data.)

Again, not all sections need to contain data. The header section specifies
whether there is data or not in each section.

This is a brief overview of the DNS protocol. The protocol is described in [71],
with a good hands on introduction in [8].

4.4.3 The Lightweight Directory Access Protocol

The Lightweight Directory Access Protocol (LDAP) [96] is based on the Directory
Access Protocol, which is a part of the comprehensive online directory developed
through the standardization process of ISO and ITU. This original standard and
service is known as X.500 [10]. The LDAP protocol was designed to run over a
connection-oriented, reliable transport. Both DAP and LDAP are described using
ASN.1. We will not go into the details of ASN.1 but rather use familiar terms when
talking about data structures.

Like DNS, all protocol operations are encapsulated in a common envelope.
This envelope is shown in figure 4.4, where only some structures have been ex-
panded. As can be guessed by the figure, the LDAP protocol is much more com-
plex than DNS.

This is an overview of LDAP, [96] is the definitive source.

Message Id

One of:
Bind Request,
Bind Response,
Unbind Request,
Search Request,

Search Result Entry,
Search Result Done,

Search Result Reference,
Modify Request,
Modify Response,

Add Request,
Add Response,

...

Controls

Bind Request:

version

name

authentication

Bind Request
Authentication
(one of):

simple,
sasl

Bind Request
Authentication
SASL Credentials:

mechanism
(credentials)

Bind Response:

LDAP Result

(Server SASL
Credentials)

Bind Response
LDAP Result:

resultCode
matchedDN

errorMessage
(referral)

Search Request:

baseObject
scope

derefAliases
sizeLimit
timeLimit
typesOnly
filter

attibutes
Search Request
Filter (ony of):

and,
or,
not,

equalityMatch,
substrings,

...

Figure 4.4. LDAP packet, with some structures expanded.

36

4.4. PERFORMANCE AND OVERHEAD

4.4.4 Round Trips

A “round trip” denotes the time spent between sending one packet from an entity
A (“client”) to an entity B (“server”) and back to the entity A. This is illustrated in
figure 4.5.

T
i
m
e

Network

Entity A Entity B

Figure 4.5. Round Trip between two entities.

This measurement is of special importance in high latency environments, such
as mobile application. Protocols that accomplish the same thing, by trading space,
CPU processing or other resources to reduce the number of round trips, will be
more efficient under these circumstances.

Since DNS can use both UDP and TCP, while LDAP only uses TCP, we first
compare the “round trip” characteristics of these underlying transport protocols.
UDP [81] does not incur any round trips other than those of the application pro-
tocol (e.g., DNS). Recall from the introduction section that TCP [83] on the other
hand provides reliable connections on top of an unreliable transport layer. This
requires some overhead, mostly due to round-trip costs of acknowledgments. If
a packet or an acknowledgement is lost, it is re-transmitted. Retransmission only
occur if packets are lost, this is relatively uncommon so we ignore this additional
complication. Figure 4.6 and 4.7 illustrates the packets sent in setting up and tear-
ing down a TCP connection.

SYN

SYN+ACK

ACK

Figure 4.6. Setting up a TCP con-
nection.

FIN

FIN+ACK

ACK

Figure 4.7. Tearing down a TCP
connection.

37

CHAPTER 4. LDAP AND DNS AS CERTIFICATE DIRECTORIES

4.4.4.1 Round Trips in a DNS query

A DNS query using UDP has the simplest characteristics, one packet is sent from
the client A to the server B. The server B responds to the query by sending a packet
to A. This is illustrated in figure 4.8.

DNS Query
via UDP

DNS Answer
via UDP

Figure 4.8. Round trips in a DNS Query over UDP.

DNS Query
via UDP

TCP ACK

TCP SYN

DNS Answer
via UDP

TCP SYN+ACK

DNS Query
via TCP

TCP ACK

DNS Answer
via TCP

TCP FIN

TCP ACK

TCP FIN+ACK

TCP ACK

Figure 4.9. Round Trips in a DNS
Query.

A complication occurs when any
of the packets exceed the size limit of
the User Datagram Protocol. When
UDP is transported via IPv4, this limit
is around 600 bytes. For IPv6 this
limit is around 1500 bytes. The pro-
tocol handles this by returning a trun-
cated packet (via UDP), with control
information in the header informing
the client that the packet was indeed
truncated. If the data the client was in-
terested in is contained within the first,
non-truncated, part, all is fine.

However, it is more likely that the
client needs the entire response packet.
DNS solves this problem by describ-
ing a fall-back mechanism to use TCP.
Now, a client receiving a truncated re-
sponse will query the server again, us-
ing TCP. Of course, this adds the round
trip costs associated with TCP connec-
tions. This case is illustrated in figure
4.9, where the DNS packets are high-
lighted using thick lines.

38

4.4. PERFORMANCE AND OVERHEAD

4.4.4.2 Round Trips in a LDAP query

TCP SYN

LDAP BIND
REQUEST

TCP ACK

TCP SYN+ACK

TCP ACK

LDAP BIND
RESPONSE

TCP ACK

LDAP SEARCH
REQUEST

TCP ACK

LDAP SEARCH
ENTRY

LDAP SEARCH
ENTRY

...

TCP ACK

LDAP SEARCH
RESULT

LDAP UNBIND
REQUEST

TCP FIN

TCP ACK

TCP FIN+ACK

Figure 4.10. Round trips in a
LDAP Query.

An LDAP query is more complicated.
The protocol is transported with TCP.
This means that the round trip costs of
setting up and tearing down TCP con-
nections are always added. Also, the
LDAP protocol itself is more “heavy-
weight” than DNS. Figure 4.10 illus-
trates round trips involved in a com-
plete LDAP query. Thin arrows are
TCP packets, thick arrows are LDAP
packets. We now describe each of the
thick arrows, the application level.

LDAP uses one round trip to set
up the connection, sending a “bind re-
quest” packet in the forward direction,
and returning a “bind result” packet.
The query itself is contained in one
“search request” packet. The answer
(e.g., certificates) to this query is sent
in “search entry” packets. There may
be zero or more such tokens sent, de-
pending on how many records matched
the search criteria. The status of the
whole search is sent from the server
to the client in a “search response”
packet. The client closes the connec-
tion with by sending a “unbind re-
quest” and closing the TCP connec-
tion.

39

CHAPTER 4. LDAP AND DNS AS CERTIFICATE DIRECTORIES

4.4.4.3 Conclusions

Practical experimentation, using the network packet sniffer Ethereal [24], confirms
our theoretical discussion. We summarize this sections’ results in table 4.3.

Protocol and Number of Round trips on Round trips on
Transport mechanism packets Application level Transport level
DNS on UDP 2 1 1
DNS on UDP+TCP 12 2 5
DNS on TCP 10 1 4
LDAP on TCP ≥ 15 3 5

Table 4.3. Number of round trips for a query using DNS and LDAP.

4.4.5 Packet Size

We are studying the usual representation of PKIX, but we should note that there
are others which are more compact [66]. Of course, the choice of representation
affects certificate size. A comparison between different representation formats is
outside the scope of this section.

Typical sizes of PKIX certificates for common key lengths are shown in Table
4.4. The choice of algorithm and key length influence the size of certificates. There
are other factors that affect certificate size as well. Certificates usually store other
information, such as names and addresses too. In our examples, we are storing
a name (User 0001, User 0002 etc) and email address (user0001@josefsson.org,
user0002@josefsson.org etc). However, in practice these addresses are usually
longer (complete X.500 addresses) and addresses exceeding 200 characters are
known to exist. In practice, certificates also include pointers to CRL distribution
points and a Certificate Policy. In our size comparison, we include a commercially
available certificate. A detailed printout of the contents of these certificates can be
found in Appendix B.

RSA 512 bit 519 bytes
RSA 1024 bit 587 bytes
VeriSign RSA 1024 bit 1160 bytes

Table 4.4. Typical certificate sizes.

Table 4.4 is of special interest to our study. It shows that all common certificates
are larger than the IPv4 UDP packet limit. This indicates that applications using
DNS to look up certificates should instruct their DNS libraries to immediately use
TCP, instead of letting it first try UDP and then fall back to TCP.

40

4.4. PERFORMANCE AND OVERHEAD

Observation 1 Use of UDP is not sufficient when looking up certificates in DNS
in an IPv4 environment. Applications should use TCP.

Table 4.4 also show that all common certificates are smaller than the corre-
sponding IPv6 UDP packet limit. This is fortunate, and make the argument for
using DNS to look up certificates stronger. This is especially true in mobile ap-
plication, where two factors work together. The first factor is that bandwidth and
latency savings are noticeable, and a small number of round trips is often a design
requirement. The second factor is that IPv6 is likely to gain faster acceptance in
mobile applications than in traditional networks. This is partly because of address-
ing issues, IPv6 make it possible to assign an Internet address to practically all
electronic devices.

Observation 2 Use of UDP is sufficient when looking up certificates in DNS in an
IPv6 environment.

The previous discussion does not apply to LDAP. LDAP is “designed to run
over connection-oriented, reliable transports” [96, paragraph 5.2] such as TCP.
However, there exists a datagram version of LDAP as work in progress [41] that
uses UDP. However, this is experimental and also does not support authentication.
We were unable to find a open implemention of it.

4.4.5.1 Packet size of DNS and LDAP queries

Comparing the two protocols in a real-world situation, we used the “RSA 1024
bit” certificate. We stored the certificate in both DNS and LDAP directories. We
fetched the certificate from the directories using a simple client. We measured
the amount of data each of the protocols, DNS and LDAP, required to transfer the
certificate. All tests were carried out using IPv4.

We did not measure the amount of overhead added by physical layers, the IP
layer, nor the UDP/TCP layer. This overhead does not vary depending on the size
of data packets2, thus the size of overhead from these layers is merely a function
of number of round trips, refer to section 4.4.4 where we study this aspect. Table
4.5 illustrate header sizes of involved layers.

Ethernet header 14 bytes
IP header 20 bytes
UDP header 8 bytes
TCP header 32 bytes

Table 4.5. Overhead of various layers.

2Assuming no fragmentation occurs because of oversized packets.

41

CHAPTER 4. LDAP AND DNS AS CERTIFICATE DIRECTORIES

Both DNS and LDAP are open and widely implemented protocols. There are
no differences in network characteristics depending purely on the implementation.
This means we are actually benchmarking the protocols, and not the implementa-
tions. For reference, however, we note that the applications used were BIND [8]
and Open LDAP [79].

Our results are listed in table 4.6. “DNS over UDP/TCP” depicts the case were
DNS first tries UDP and falls back to TCP. For comparison, it also includes the
“raw” certificate size. These values were collected using Ethereal [24]. The raw
data is available electronically [52].

Data from Data from Total
client server data

Certificate (data) - - 587
DNS over TCP 37 691 728
DNS over UDP/TCP 74 728 802
LDAP over TCP 80 772 852

Table 4.6. Bytes required to transfer a certificate that contains a 1024 bit RSA key
with DNS and LDAP.

4.4.5.2 Conclusions

Figure 4.11 illustrate table 4.6 and summarizes this section’s results. LDAP uses
almost twice as much overhead as DNS.

4.4.6 Computer Resource Utilization

The previous sections discuss facts and figures related to network bandwidth uti-
lization and network latency, but in reality there are many factors combined that af-
fect performance. This section makes a simple measurement of number of queries
per second one can expect with common server implementations. Measurements
on actual implementations must be considered carefully before anything can be
said about the technology they implement, though.

The tests consisted of running a simple benchmark tool, developed for this pur-
pose, that queries a server for a certificate and retrieves the certificate. The tool asks
5000 queries. The tool itself was run three times (with similar results) to assure
that no external factors influenced the results. Since our LDAP implementation
only runs on TCP, we are only comparing it to DNS over TCP. The source code of
the benchmark tool used can be found in Appendix C.

42

4.4. PERFORMANCE AND OVERHEAD

Data�
over TCP

DNS
and TCP

DNS over UDP LDAP
500�

600�

700�

800�

900�
B

yt
es

Data sent from server
Data sent from client

Figure 4.11. Bytes required to transfer a certificate with a 1024 bit RSA key with
DNS and LDAP.

4.4.6.1 Conclusions

Figure 4.12 illustrates table 4.7 and summarizes this section’s result. The discrep-
ancy between DNS and LDAP performance is quite large, to DNS’s advantage.
Some of it can be explained by our previous discussions on packet sizes, and es-
pecially round trips. A protocol using more than one round trip requires servers to
somehow remember states in the protocol, which results in more complex software.
But the large discrepancy cannot be explained by this alone. Rather, the reason has
much to do with the design of, and expected use of, the protocols. The LDAP
protocol was not designed for small, fast, simple queries but rather for sessions
were programs (or users) may ask many questions, or search among answers in-
teractively. Hence not much effort has gone into optimizing existing LDAP server
software for the former case. DNS on the other hand has been designed with effi-
ciency of implementations in mind, and this shows.

Queries
Implementation per second

DNS BIND version 9.0.0 485
LDAP OpenLDAP version 1.2.9 33

Table 4.7. Queries per second to look up a certificate.

43

CHAPTER 4. LDAP AND DNS AS CERTIFICATE DIRECTORIES

BIND 9.0.0
DNS

OpenLDAP 1.2.9
LDAP

0
�

100
�

200
�

300
�

400
�

500
�

Q
u

er
ie

s/
se

co
n

d

�

519 byte certificate
10Mbps ethernet
233MHz i386 Linux

Figure 4.12. Queries per second to look up a certificate.

44

Chapter 5

DNS Security Considerations

This chapter is about protecting your Certificate Directory, which is assumed here
to be a public directory, from privacy abuses. We first need to discuss this concept
on an abstract level. How can public information be of privacy concern? On the
surface, this might look like a contradiction. This introduction borrows some ideas
from “The Ethics of Information: Protecting Privacy in the Computer Age” [36].

The concepts of private information and public information are key to this
discussion. The traditional notation of privacy is that of protecting private infor-
mation. Here, we will try to argue that, in the light of computer technology, the
notation of privacy needs to be reconsidered.

Information about a person such as name, address, telephone number, employ-
ment, passport photo, etc are by the strictest sense of the definition public. These
seemingly unrelated pieces of information, taken together, present a privacy con-
cern to most people. Traditionally the “taken together” part means costly intelli-
gence work. It would cost a lot of time and money. Traditionally, you are safe. But
with public databases and high-speed connections, it is easy to collect information
about a vast number of people at the same time and process it locally. All such
databases with “public” information are a privacy concern.

Today we thus have to replace the “time and money” factor that secured privacy
in older times, with a new factor that makes “data mining” infeasible.

Now, if we return to our application, we have a certificate directory. Certifi-
cates often carry additional information, used to authenticate the certificate holder
for certain purposes. Examples of additional information are qualification, licenses
(attorney, doctor, . . .), official approvals (vehicle driving licenses, . . .). One can
imagine a credit card vendor using certificates containing users credit card num-
bers. This information presents the privacy concern.

Secure DNS [20] contains a serious problem in this regard, when used as a
Certificate Directory. This chapter presents this problem in detail, and a new idea
to solve this problem.

45

CHAPTER 5. DNS SECURITY CONSIDERATIONS

5.1 Secure DNS

Secure DNS is a recent development in the DNS field. It is currently in testing
for deployment by various organizations [67] [76]. The following three distinct
services are the goal of Secure DNS [20]:

• Data Origin Authentication
Authentication of data is provided by cryptographically signing data stored
in DNS. Both keys and signatures are stored in DNS, together with the data
it authenticates. Since keys are used in authenticating these signatures, they
need to be authenticated just as other DNS data. Of course, this chain of
keys and signatures must have a locally trusted root, or the data cannot be
trusted at all. Secure DNS aware clients are usually configured with a (small)
number of trusted keys.

The keys used to sign data in DNS are attached to each collection of DNS
data (a “DNS zone”). This is in contrast to attaching keys to individual
servers involved in querying the information. This design allows for “off
line signing”, so that even a compromise of the servers involved does not
have to affect the security of the data.

Data non-existence services are also provided. This means that it is possible
to strongly secure that a certain name does not exist. E.g., a client asking for
maria.josefsson.org should be able to trust that this domain does not exist
(if that is the case).

• Key distribution
To support Data Origin Authentication, Secure DNS defines a method of
storing keys in DNS known as “KEY records”. Thus DNS is used as a public
key distribution mechanism (a “Public Key Infrastructure”). This PKI is
used to support the public-key cryptographic operations required by Secure
DNS itself, but it can also be used for other protocols.

• Transaction and request authentication
Each individual transaction can also be protected by means of Secure DNS.
This is in contrast to only protecting the data involved. This makes it possible
for a DNS client to be sure it is at least getting responses from the server it
thinks it queried, and that responses are to the query it sent.

Outside the goals of Secure DNS, and hence not implemented, are means for
confidentiality of queries or responses (e.g., information is considered to be pub-
lic), and protection against denial of service attacks.

46

5.1. SECURE DNS

5.1.1 Data Non-existence

This section gives an abstract description of how Secure DNS achieves strong data
non-existence. Again, “data non-existence” is how clients (securely) trust that a
certain domain, say maria.josefsson.org, does not exist.

We illustrate this by presenting a scenario, a naive first attempt at a solution
to this scenario, and then discuss some problem with that solution. We proceed
to describe the currently implemented solution, NXT records [20, section 5], that
overcomes these problems. Since we have found further problems with this solu-
tion, we describe these problems. We conclude by presenting our own solution,
that overcomes these new problems [50].

Scenario: Consider a set of keys1 that uniquely identify a domain name (e.g.,
kalle.josefsson.org) from an alphabet (strings of alphabetic characters, “a”-”z”2)
that each is attached to one or more data item(s) (e.g., certificates). Client enti-
ties (DNS resolvers) can send queries to server entities (DNS servers) for a key,
expecting the corresponding data back. The data is cryptographically signed to
provide authentication of data origin. However, if a certain key does not have any
attached data, a message need to be returned with that information. The problem
of data non-existence is to strongly authenticate this last piece of information.

The naive implementation, illustrated in figure 5.1, is for a client A to query
a server B and expect a cryptographically signed answer back. To prevent replay-
attacks to occur after new names have been introduced, the signature should have
limited life length.

No such domain:
"maria.josefsson.org"

Question:
"maria.josefsson.org"

A B

Figure 5.1. Naive data non-existence implementation.

1Do not confuse this with cryptographic keys. In this chapter, we will explicitly mention “cryp-
tographic key” when we talk about them.

2DNS today is US and ASCII centric. Work on supporting internationalized domain names is
under way

47

CHAPTER 5. DNS SECURITY CONSIDERATIONS

First we convince ourself that the naive implementation does indeed work. It
does, since we have:

• The client can verify the signature with the server’s key (stored in DNS).

• If the signature is valid, the client knows that maria.josefsson.org indeed
does not exist.

Three major limitations that this naive implementation faces, and that Secure
DNS had to overcome, are the following:

• It requires the signing key at server B to be “online”
That is, available for signing operations when answering queries. This would
be a security concern, since breaking into the servers would mean compro-
mising the security of Secure DNS.

• Cryptographic signing operations are slow
This brings up two related problems. First, it would be easy to overload a
server by repeatedly asking questions, a so called “Denial of Service” at-
tack. Secondly, today large servers may answer several thousand queries per
second, cryptographic signing hardware with this kind of performance is not
commonly available (today).

• Vulnerability to Playback attacks
A negative answer for a domain may be recorded, and if the domain is later
added, it may be possible to use the signed negative response to deny ex-
istence for a domain. (This may be solved by adding a challenge/response
scheme for each DNS query, but DNS does not include one today.)

These problems are easily translated into requirements for a better solution:

• Off line signing.

• Because of off line signing, we need to find some piece of data that can be
signed when off line that works as a “data non-existence proof” when online.

We first mention that a naive approach of signing all possible keys is not feasi-
ble, since this is practically a infinite set. We are now going to study the currently
implemented solution, NXT records, but first we need som data to work with. Con-
sider table 5.1.

By introducing a canonical ordering3 of keys, we can enumerate all keys that
have data attached to them. By ordering keys we can construct links between each
key in the sorting order. This piece of information can be signed and used as a
“data non-existence proof” (discussion below). To illustrate this, consider table
5.2 where some new keys and data are added to our previous table.

3The canonical ordering used in Secure DNS are simple byte-by-byte comparison of the ASCII
encoding of strings. See [20, Section 8].

48

5.1. SECURE DNS

Key Data
kalle.josefsson.org [Kalle Josefsson’s Certificate]
simon.josefsson.org [Simon Josefsson’s Certificate]
lotta.josefsson.org [Lotta Josefsson’s Certificate]

Table 5.1. Example of (partial) DNS information for a zone josefsson.org.

Key Data
kalle.josefsson.org [Kalle Josefsson’s Certificate]
kalle.josefsson.org Next key: lotta.josefsson.org
lotta.josefsson.org [Lotta Josefsson’s Certificate]
lotta.josefsson.org Next key: simon.josefsson.org
simon.josefsson.org [Simon Josefsson’s Certificate]
simon.josefsson.org Next key: kalle.josefsson.org

Table 5.2. Example of non-existence proof data for data in table 5.1.

We now describe how this new information is used in a clever way to achieve a
“non-existence proof”. Entity A queries for a non-existent keymaria.josefsson.org.
The server replies with a tuple, (lotta.josefsson.org, Next key: simon.josefsson.
org). This is illustrated in figure 5.2. The “next” tuple is cryptographically signed,
to provide authentication of data non-existence. These “Next” tuples can be calcu-
lated in advance, and be cryptographically signed off line. Thus it fulfills our two
earlier requirements.

Now, how does the entity A know that maria.josefsson.org does not exist?
By using the canonical ordering process, it knows that maria.josefsson.org sort
later than lotta.josefsson.org and earlier than simon.josefsson.org. Since these
“next” records were created using all existing keys, the entity A now can be cer-
tain that maria.josefsson.org indeed do not exist. (Of course, assuming that the
cryptographic signature was correctly verified.)

5.1.2 NXT Chaining

This form of non-existence proof raises an immediate problem. From the previous
paragraph, the entity A that queried for maria.josefsson.org learned more than
that it does not exist. Explicitly, it learned that both lotta.josefsson.org and si-
mon.josefsson.org do exist. Continuing by asking for a domain that sorts earlier
than lotta.josefsson.org, it is easy to see how this can be abused to learn the entire
content of the entire data set.

49

CHAPTER 5. DNS SECURITY CONSIDERATIONS

("lotta.josefsson.org",
"Next: simon.josefsson.org")

Question:
"maria.josefsson.org"

A B

Figure 5.2. “NXT” Data-nonexistence implementation.

Observation 3 Secure DNS’s non-existence proofs “NXT” can be used to collect
all data in a DNS zone. We call this “NXT chaining”.

Besides privacy concerns, gaining knowledge of a victim’s DNS information
opens up more direct forms of attacks [6]. In short, the knowledge of a certain or-
ganization’s DNS information provides clues that help an intruder. Although most
of the dangers in the scenarios described in the document have become obsolete
(like allowing zone transfers), NXT chaining in Secure DNS re-introduces one of
the concerns.

An alternative that reduces information revealed by non-existence responses is
needed. The next section presents our idea.

5.2 Data Non-existence with Minimum Disclosure

The idea is to replace the sensitive information of NXT records of figure 5.2 with
something that serves the same purpose, but cannot be used to discover names of
other keys in the data collection. This is illustrated in figure 5.2.

Obviously the function “f” of figure 5.2 should not be possible to invert, or
the idea of replacing the original data is lost. We suggest using a well-known
cryptographic hash function, SHA-1 [77]. We illustrate the corresponding DNS
data in table 5.3.4 We see encoded SHA-1 values as valid keys, thus re-using the
same canonical ordering process of Secure DNS.

We first verify that this solution still works. We do this by describing how a
client builds trust that its query for maria.josefsson.org does not exist. Assume
this key hashes to 142. As illustrated in figure 5.4, the server can respond to the

4For brevity, the table uses small values. In practice, the values would have been an encoded form
of a 160 bit SHA-1 value.

50

5.2. DATA NON-EXISTENCE WITH MINIMUM DISCLOSURE

("lotta.josefsson.org",
"Next: simon.josefsson.org")

Question:
"maria.josefsson.org"

f

?

f

?

A B

Figure 5.3. Minimum information disclosure and data non-existence.

Key Data
kalle.josefsson.org [Kalle Josefsson’s Certificate]
127.josefsson.org Next key: 156.josefsson.org
lotta.josefsson.org [Lotta Josefsson’s Certificate]
59.josefsson.org Next key: 127.josefsson.org
simon.josefsson.org [Simon Josefsson’s Certificate]
156.josefsson.org Next key: 59.josefsson.org

Table 5.3. Example of non-existence proof data for data in table 5.1.

query with a tuple (127.josefsson.org, Next key: 156.josefsson.org). A client
now makes sure a hash calculation of its query hashes to a value between the two
returned hash values. If this is the case, it can be certain that the query did not
ave any corresponding data. (Of course, it must also verify the corresponding
cryptographic signature.)

We return to our problem with NXT records, that a client learns additional
information from the non-existence proof. This is now replaced by only learning
the hash value of two existing keys in the data collection. This can be abused to
chain through hash values of all existing names in the zone. Assuming the hash
function is not invertible, this is not a problem. However, it is possible to use this
to determine the number of names in the zone5.

5Good estimates on the number of names in a zone can be calculated using only a few non-
existence proofs though (assuming hash values are equally distributed.) A rough estimate can be
done using only one non-existence proof, assuming a Poisson distribution.

51

CHAPTER 5. DNS SECURITY CONSIDERATIONS

("127.josefsson.org",
"Next: 156.josefsson.org")

Question:
"maria.josefsson.org"

(hashes to 142)

A B

Figure 5.4. Final example of how minimum information disclosure and data non-
existence would work using NO records.

5.3 Implementing the Idea in DNS

The previous idea has been described in a standards document [50, work in progress].
It introduces two further technicalities that are of interest here:

• Hash truncation
To reduce size of NO records, hash values can be truncated.

• Record compression
To reduce number of records, hash values from several consecutive NO
records can be merged into one, larger, record.

Besides mentioning these, going more into the details of the technical descrip-
tion is outside the scope of this chapter. The technical document, with a complete
description, can be found in Appendix A.

52

Chapter 6

Conclusions

We believe DNS would make a good distribution point of application keys and
certificates for large scale systems. The main reason is that DNS is a unique and
ubiquitous provider of bindings between commonly used names (i.e., email ad-
dresses and hostnames) to pieces of data. We have also seen that DNS is generally
more efficient than LDAP.

With regard to the recent Secure DNS standardization process, our results from
chapter 5 suggest that Secure DNS should not be used in zones where privacy
sensitive information is stored. Applications that require or are able to make use of
Secure DNS are recommended to use approaches such as the NO record outlined.

One area that warrents further work is authenticating updates in DNS. As our
section 4.3, “Updating Certificates in a Directory”, shows, only shared symmetric
keys are in use today.

53

CHAPTER 6. CONCLUSIONS

54

Bibliography

1. D. Eastlake 3rd. DNS Request and Transaction Signatures (SIG(0)s), September
2000. RFC 2931.

2. America Online Instant Messenger. World Wide Web, http://www.aol.com/aim/,
Last visited 9 November 2001.

3. D. Atkins, W. Stallings, and P. Zimmermann. PGP Message Exchange Formats, Au-
gust 1996. RFC 1991.

4. A. Back. PGP Timeline and Brief History. World Wide Web, http://www.
cypherspace.org/~adam/timeline/, Last visited 9 November 2001.

5. D. Balenson. Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms,
Modes, and Identifiers, February 1993. RFC 1423.

6. S. M. Bellovin. Using the Domain Name System for System Break-Ins. In Proceed-
ings of the Fifth Usenix UNIX Security Symposium, June 1995.

7. T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol—HTTP/1.0,
May 1996. RFC 1945.

8. Berkeley Internet Naming Daemon. World Wide Web, http://www.isc.org/
bind/, Last visited 9 November 2001. version 9.0.0.

9. M. Branchaud. A Survey of Public-Key Infrastructures. Master’s thesis, McGill Uni-
versity, Montreal, March 1997.

10. CCITT. Recommendation X.500: The Directory: Overview of Concepts, Models and
Services. Technical report, ISO/IEC 9594, 1988. Also published as ISO/IEC 9594.

11. CCITT. Recommendation X.509: The Directory—Authentication Framework. Tech-
nical report, 1988. Also published as ISO/IEC 9594-8.

12. M. Crispin. Internet Message Access Protocol—Version 4rev1, December 1996. RFC
2060.

13. D. Crocker. Standard for the format of ARPA Internet text messages, August 1982.
RFC 822.

14. S. Crocker, N. Freed, J. Galvin, and S. Murphy. MIME Object Security Services,
October 1995. RFC 1848.

15. T. Dierks and C. Allen. The TLS Protocol Version 1.0, January 1999. RFC 2246.

16. W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory, vol IT-22(no. 6):644–654, 1976.

55

http://www.aol.com/aim/
http://www.cypherspace.org/~adam/timeline/
http://www.cypherspace.org/~adam/timeline/
http://www.isc.org/bind/
http://www.isc.org/bind/

BIBLIOGRAPHY

17. C. Dinkel. Secure Data Network System (SDNS) Network, Transport, and Message
Security Protocols, volume U.S. Department of Commerce, National Institute of Stan-
dards and Technology, report NISTIR 90-4250. 1990.

18. IETF DNS Extensions Workgroup. WorldWideWeb, http://www.ietf.org/html.
charters/dnsext-charter.html, Last visited 9 November 2001. Workgroup
chaired by Olafur Gudmundsson and Randy Bush.

19. D. Eastlake. Secure Domain Name System Dynamic Update, April 1997. RFC 2137.

20. D. Eastlake. Domain Name System Security Extensions, March 1999. RFC 2535.

21. D. Eastlake and O. Gudmundsson. Storing Certificates in the Domain Name System
(DNS), March 1999. RFC 2538.

22. M. Elkins. MIME Security with Pretty Good Privacy (PGP), October 1996. RFC
2015.

23. E. A. Young et al. OpenSSL. World Wide Web, http://www.openssl.org/, Last
visited 9 November 2001.

24. G. Combs et al. Ethereal. World Wide Web, http://ethereal.zing.org/, Last
visited 9 November 2001.

25. Menezes et al. Handbook of applied Cryptography. CRC Press, 1996. World
Wide Web, http://www.cacr.math.uwaterloo.ca/hac/, Last visited 9 Novem-
ber 2001.

26. J. Feghhi, J. Feghhi, and P. Williams. Digital Certificates. Addison Wesley, 1999.

27. FidoNet Policy Document. WorldWideWeb, http://www.fidonet.org/policy4.
txt, Last visited 9 November 2001, June 1989.

28. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol—HTTP/1.1, June 1999. RFC 2616.

29. W. Ford and M. S. Baum. Secure Electronic Commerce. Prentice Hall, 1997.

30. N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part
Five: Conformance Criteria and Examples, November 1996. RFC 2049.

31. N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies, November 1996. RFC 2045.

32. N. Freed and N. Borenstein.Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types, November 1996. RFC 2046.

33. N. Freed, J. Klensin, and J. Postel. Multipurpose Internet Mail Extensions (MIME)
Part Four: Registration Procedures, November 1996. RFC 2048.

34. A. Frier, P. Karlton, and P. Kocher. The SSL 3.0 Protocol, November 1996. Netscape
Communications Corporation.

35. J. Galvin, S. Murphy, S. Crocker, and N. Freed. Security Multiparts for MIME: Mul-
tipart/Signed and Multipart/Encrypted, October 1995. RFC 1847.

36. R. E. Gantenbein. The Ethics of Information: Protecting Privacy in the Computer Age.
World Wide Web, http://www.cs.uwyo.edu/~rex/privacy.html, Last visited 9
November 2001, February 1998.

56

http://www.ietf.org/html.charters/dnsext-charter.html
http://www.ietf.org/html.charters/dnsext-charter.html
http://www.openssl.org/
http://ethereal.zing.org/
http://www.cacr.math.uwaterloo.ca/hac/
http://www.fidonet.org/policy4.txt
http://www.fidonet.org/policy4.txt
http://www.cs.uwyo.edu/~rex/privacy.html

BIBLIOGRAPHY

37. O. Goldreich. Foundations of Cryptography Vol 1. Cambridge University Press, 2001.

38. A. Gulbrandsen and P. Vixie. A DNS RR for specifying the location of services (DNS
SRV), October 1996. RFC 2052.

39. M. Hamilton and R. Wright. Use of DNS Aliases for Network Services, October 1997.
RFC 2219.

40. M. Hauben and R. Hauben. Netizens—On the History and Impact of the Net.
World Wide Web, http://www.columbia.edu/~hauben/netbook/, Last visited
9 November 2001, April 1995.

41. R. Hedberg and L. Johansson. Connection-less Lightweight Directory Access Proto-
col, May 2000. Work in Progress, draft-ietf-ldapext-cldap-00.txt.

42. R. Hedberg and R.Moats. A Taxonomoy of Methods for LDAPClients Finding Servers,
September 2000. Work in Progress, draft-ietf-ldapext-ldap-taxonomy-03.txt.

43. K.E.B. Hickman. The SSL Protocol. World Wide Web, http://home.netscape.
com/eng/security/SSL_2.html, Last visited 9 November 2001, February 1995.
Netscape Communications Corporation.

44. R. Housley. Cryptographic Message Syntax, June 1999. RFC 2630.

45. R. Housley and P. Hoffman. Internet X.509 Public Key Infrastructure Operational
Protocols: FTP and HTTP, May 1999. RFC 2585.

46. What is ICQ? World Wide Web, http://www.icq.com/products/whatisicq.
html, Last visited 9 November 2001.

47. American National Standards Institute. American National Standard for Financial
Institution Message Authentication, 1986. ANSI X9.9.

48. An Introduction to Internet Relay Chat (IRC). World Wide Web, http://www.
newircusers.com/ircchat.html, Last visited 9 November 2001.

49. ITU-T. ITU-T recommendation X.680-X.683. Technical report, 1997. Also pub-
lished as ISO/IEC 8824-1:1998 “Information Technology—Abstract Syntax Notation
One (ASN.1): Specification of Basic Notation”, ISO/IEC 8824-2:1998 “Informa-
tion Technology—Abstract Syntax Notation One (ASN.1): Information Object Spec-
ification”, ISO/IEC 8824-3:1998 “Information Technology—Abstract Syntax Nota-
tion One (ASN.1): Constraint Specification”, ISO/IEC 8824-4:1998 “Information
Technology—Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1
Specifications”.

50. S. Josefsson. Authenticating denial of existence in DNS with minimum disclosure (or;
An alternative to DNSSEC NXT records), August 2000. Work in Progress, draft-ietf-
dnsext-not-existing-rr-00.txt.

51. S. Josefsson. Base 64, 32 and 16 Encodings, August 2000. Work in Progress, draft-
josefsson-base-encoding-00.txt.

52. S. Josefsson. Ethereal Network Dumps, raw data. World Wide Web, http:
//josefsson.org/exjobb/, Last visited 9 November 2001, September 2000.

53. J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS Performance and the Effec-
tiveness of Caching. In Proceedings of the ACM SIGCOMM Internet Measurement
Workshop, 2001, 2001.

57

http://www.columbia.edu/~hauben/netbook/
http://home.netscape.com/eng/security/SSL_2.html
http://home.netscape.com/eng/security/SSL_2.html
http://www.icq.com/products/whatisicq.html
http://www.icq.com/products/whatisicq.html
http://www.newircusers.com/ircchat.html
http://www.newircusers.com/ircchat.html
http://josefsson.org/exjobb/
http://josefsson.org/exjobb/

BIBLIOGRAPHY

54. B. Kaliski. A Layman’s Guide to a Subset of ASN.1, BER, and DER. Technical report,
RSA Security, November 1993.

55. B. Kaliski. Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certifica-
tion and Related Services, February 1993. RFC 1424.

56. S. Kent. Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based
Key Management, February 1993. RFC 1422.

57. J. Klensin, R. Catoe, and P. Krumviede. IMAP/POP AUTHorize Extension for Simple
Challenge/Response, September 1997. RFC 2195.

58. L.M. Kohnfelder. Towards a Practical Public-Key Cryptosystem. Master’s thesis,
MIT, May 1978.

59. H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Au-
thentication, February 1997. RFC 2104.

60. RSA Laboratories. PKCS 7: Cryptographic Message Syntax Standard. Technical
report, RSA Security, November 1993.

61. L. Lamport. LATEXUser’s Guide and Reference Manual. Addison-Wesley, 2nd edition,
5th printing edition, 1996.

62. A. Larsson. Dia. World Wide Web, http://www.lysator.liu.se/~alla/dia/,
Last visited 9 November 2001.

63. P. Leach and C. Newman. Using Digest Authentication as a SASL Mechanism, May
2000. RFC 2831.

64. J. Linn. Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryp-
tion and Authentication Procedures, February 1993. RFC 1421.

65. J. Linn. Generic Security Service Application Program Interface Version 2, Update 1,
January 2000. RFC 2743.

66. M. Nystrom and J. Brainard. An X.509-Compatible Syntax for Compact Certificates.,
In Proceedings of Secure Networking, CQRE, LNCS 1740, 1999.

67. D. Massey, T. Lehman, and E. Lewis. DNSSEC Implementation in the CAIRN Testbed.
Technical report, CAIRN, October 1999. Work in progress, Internet-Draft draft-ietf-
dnsop-dnsseccairn-00.txt.

68. R.C. Merkle. Secure Communication Over Insecure Channels. Communications of
the ACM, vol 21(no. 4):pp. 294–299, 1978.

69. OSI X.400 Message Handling System Model, 1984. section 2.2.1.

70. S.P. Miller, B.C. Neuman, J.I. Schiller, and J.H. Saltzer. Kerberos Authentication and
Authorization System. MIT Project Athena Documentation Section E.2.1, December
1987.

71. P.V. Mockapetris. Domain names—implementation and specification, November
1987. RFC 1035.

72. K. Moore. MIME (Multipurpose Internet Mail Extensions) Part Three: Message
Header Extensions for Non-ASCII Text, November 1996. RFC 2047.

73. J. Myers. Simple Authentication and Security Layer (SASL), October 1997. RFC 2222.

58

http://www.lysator.liu.se/~alla/dia/

BIBLIOGRAPHY

74. J. Myers and M. Rose. Post Office Protocol—Version 3, May 1996. RFC 1939.

75. Netscape NetCenter. World Wide Web, http://home.netscape.com/netcenter/
whitepages.html, Last visited 9 November 2001.

76. NIC-SE. Reports on DNSSEC. World Wide Web, http://www.nic-se.se/
dnssec/, Last visited 9 November 2001.

77. NIST. Secure Hash Standard. Technical Report FIPS PUB 180-1, April 1995.

78. M. Nystrom. The SecurID(r) SASL Mechanism, April 2000. RFC 2808.

79. OpenLDAP. WorldWideWeb, http://www.openldap.org/, Last visited 9 Novem-
ber 2001. version 1.2.9.

80. J. Palme. History of the KOM computer conferencing system. WorldWideWeb, http:
//www.dsv.su.se/jpalme/s1/history-of-KOM.html, Last visited 9 November
2001, October 1997.

81. J. Postel. User Datagram Protocol, August 1980. RFC 768.

82. J. Postel. Internet Protocol, September 1981. RFC 791.

83. J. Postel. Transmission Control Protocol, September 1981. RFC 793.

84. J. Postel. Simple Mail Transfer Protocol, August 1982. RFC 821.

85. B. Ramsdell and Ed. S/MIME Version 3 Certificate Handling, June 1999. RFC 2632.

86. B. Ramsdell and Ed. S/MIME Version 3 Message Specification, June 1999. RFC 2633.

87. R. Rivest. Can We Eliminate Certificate Revocation Lists. Financial Cryptography,
Rafael Hirschfeld, Ed., Anguilla, British West Indies, vol. 1465:pp. 178–183, February
1998. Springer.

88. R.L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126, Febru-
ary 1978.

89. B. Schneier. Applied Cryptography. Wiley, second edition edition, 1996.

90. M. UMEDA and L.M. Ingebrigtsen et al. Gnus. World Wide Web, http://www.
gnus.org/, Last visited 9 November 2001.

91. U.S. Department of Commerce. Data Encryption Standard. Federal Information Pro-
cessing Standards Publication FIPS PUB 46, 1977. Republished as FIPS PUB 46-2 in
1994.

92. VeriSign Directory. World Wide Web, http://digitalid.verisign.com/
services/client/, Last visited 9 November 2001.

93. P. Vixie, Ed., S. Thomson, Y. Rekhter, and J. Bound. Dynamic Updates in the Domain
Name System (DNS UPDATE), April 1997. RFC 2136.

94. P. Vixie, O. Gudmundsson, D. Eastlake, and B. Wellington. Secret Key Transaction
Authentication for DNS (TSIG), May 2000. RFC 2845.

95. M. Wahl, H. Alvestrand, J. Hodges, and R. Morgan. Authentication Methods for
LDAP, May 2000. RFC 2829.

59

http://home.netscape.com/netcenter/whitepages.html
http://home.netscape.com/netcenter/whitepages.html
http://www.nic-se.se/dnssec/
http://www.nic-se.se/dnssec/
http://www.openldap.org/
http://www.dsv.su.se/jpalme/s1/history-of-KOM.html
http://www.dsv.su.se/jpalme/s1/history-of-KOM.html
http://www.gnus.org/
http://www.gnus.org/
http://digitalid.verisign.com/services/client/
http://digitalid.verisign.com/services/client/

BIBLIOGRAPHY

96. M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3), De-
cember 1997. RFC 2251.

97. Whitepages. World Wide Web, http://www.whitepages.com, Last visited 9
November 2001.

98. P. R. Zimmermann. The Official PGP User’s Guide. MIT Press, 1995.

60

http://www.whitepages.com

Index

Abstract Syntax Notation, see ASN.1
administrative requirements, 27
America on line AIM, 14
ASN.1, 17, 36
asymmetric cipher, 3
asymmetric ciphers, 4
authentication, 4
authentication mode, 6

CA, see certificate authority
certificate

generate requests, 24
sign, 24

certificate authority, 11, 16
verification process, 11

certificates, 7
credential based, 27
identity based, 27
locating, 26
samples, 81
size, 40
updating, 31

cipher, 3
ciphertext, 3
Client Configuration, 30
CMS, see Cryptographic Message

Syntax
complexity, 7
confidentiality, 4
Cryptographic Message Syntax, 17
cryptography, 3

data integrity, 27
data mining, 45
data non-existence

chain problem, 49

in DNS, 47
naive implementation, 47
NO implementation, 50
NXT implementation, 48
proofs, 48

data origin authentication, 27
in DNS, 46

decryption, 3
DES, 4
digital signature, 5
distinguished name, 16, 28
domain name system, 9, 13

ASCII representation, 24
caching, 34
internal, 30
locating directory, 30
protocol, 35
publishing certificates, 24
secure DNS, 45
design goals, 46

eavesdropper, 3
electronic mail, 9, 14
encryption, 3
ethics of information, 45

Fermat’s small theorem, 5
Fidonet, 14

graphein, 3
GSS alogorithm for TSIG, 32

hashed message authentication codes,
4, 32

HTTP, 9, 15
HyperText Transfer

Protocol, see HTTP

61

INDEX

ICQ, 14
IETF, 8, 16, 17
IMAP, 15
instant messaging, 14
integrity, 4, 5
integrity check values, 4
internet, 9
Internet Engineering Task Force, see

IETF
Internet Mail Message

Format, see RFC 822
internet protocol

version 4, 40
version 6, 41

internet relay chat (IRC), 14
IP, 9
ISO X.500, 10

kerberos, 31
key distribution

in DNS, 46
key-space, 3
keyed hash function, 4
Keys

RSA, 24
keys, 3
KOM, 14
kryptos, 3

Latency, see Round Trips
LDAP, 36

add request, 36
add response, 36
bind request, 36
bind response, 36
locating directory, 29
modify request, 36
modify response, 36
protocol, 36
publishing certificates, 24
SASL credentials, 36
search request, 36
search result done, 36
search result entry, 36

LDAP referrals, 29
LDIF, 24
Lightweight Directory Access

Protocol, see LDAP

mailer, 14
man in the middle, 7
MEMO, 14
message authentication codes, 4
message integrity check, 4
message transfer agents (MTA), 14
messages, 3
MIME, 14, 15

meta language, 22
PGP, 17
secure, 17
secure multi-parts, 17

MOSS, 14, 17
Multipurpose Internet Mail

Extensions, seeMIME

NO resource record, 52, 65
nonrepudiation, 4
NXT chaining, 46

one-way hash value, 6
OpenPGP, 14
originator, 14

packet size, 40
password based authentication, 31
PEM, 14
PGP, 14
PGP/MIME, 17
phone book, 9
PKCS #7, 17
pki, see public key infrastructure
PKI hosting, 30
plaintext, 3
policy registration

authority (PCA), 16
pretty good privacy (PGP), 17
privacy abuse, 45
privacy enhanced mail (PEM), 16
public chat groups, 14

62

INDEX

public discussion forums, 14
public key, 4
public key cryptography, 4
public key infrastructure, 8, 11
public-key certificates, 7

RA, see registration authority
receivers, 3
recipients, 14
registration authority, 11
request authentication

in DNS, 46
RFC 822, 15
round trips, 37

comparison between
DNS and LDAP, 40

in DNS, 38
in LDAP, 39
in TCP, 37
in UDP, 37

RSA, 5

S/MIME, 14, 17
secret writing, 3
Secure MIME, seeMIME
Security Multiparts for MIME, 14
senders, 3
SGML, 22
shared secret key, 3
sign, 6
signature, 6
signature generation, 6
simple distributed security

infrastructure (SDSI), 27
simple mail transfer protocol, 9
simple public key infrastructure, 27
SMS, 14
SRV records, 29
symmetric cipher, 3

TCP, 9
round trips in, 37

transaction authentication
in DNS, 46

Transmission Control
Protocol, see TCP

trusted third party, 7

UDP
round trips in, 37

up-to-date information, 27
user agents, 14
User Datagram Protocol, see UDP
users, 14

verification procedure, 6
verify, 6
VeriSign, 40

well known DNS aliases, 29
white-pages, 27

X.400, 14
X.500, 28

attributes, 28
DAP, 29
DIT, 28
entries, 28

XML, 22

63

INDEX

64

Appendix A

NO Resource Records

The following is the technical specification of NO Resource Records [50] as dis-
cussed in chapter 6. It was submitted as a independent submission to the IETF
DNS Extensions Work Group [18]. The Work Group adopted it is an official work
item. This is the second version (not a final version) of the document.

65

APPENDIX A. NO RESOURCE RECORDS

Network Working Group S.A. Josefsson
Internet-Draft RSA Security
Expires: February 22, 2001 August 24, 2000

Authenticating denial of existence in DNS with minimum disclosure
(or; An alternative to DNSSEC NXT records)

draft-ietf-dnsext-not-existing-rr-00

Status of this Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on February 22, 2001.

Copyright Notice

Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

This draft present an alternative to NXT records, used to achieve
authenticated denial of existence of a domain name, class and type.
Problems with NXT records, as specified in RFC 2535, are identified.
One solution, the NO record, is presented.

66

The NO record differ from the NXT record by using a cryptographic
hash value instead of the domain name. This prevent an adversery
from collecting information by "chaining" through a zone. It also
remove delegation point concerns in NXT records. The document also
describe hash truncation and record merging that reduces
storage/network load.

Table of Contents

1. Introduction . 3
2. Context . 3
3. The NO Resource Record 4
3.1 Idea . 4
3.2 NO RDATA Format . 4
3.3 NO RDATA on-the-wire format example 6
3.4 Owner Names . 6
3.5 Additional Complexity Due To Wildcards 7
3.6 No Considerations at Delegation Points 7
3.7 Hash Truncation and Dynamic Updates 8
3.8 Reducing Number of Records 9
3.9 Hash Collisions . 9
3.10 Authenticating Denial of NO Records 9
3.11 Case Considerations 10
3.12 Presentation Format 10
3.13 Examples . 10
3.13.1 Adding NO Records to a Zone 10
3.13.2 Simple NO creating entity 11
3.13.3 Advanced NO creating entity 11
3.13.4 Resolver Query for Non-existing Domain 11
3.13.5 Resolver Query for Non-existing Type At Existing Domain . 12
4. Security Considerations 13
5. IANA Considerations 13

References . 14
Author’s Address . 14
Full Copyright Statement 15

1. Introduction

"Domain Name Security Extensions", RFC 2535 [1], specifies several
extensions to DNS that provides data integrity and authentication.
Among them is the NXT record, used to achieve authenticated denial
of existence of domains, and authenticated denial of existence on
certain class/types on existing domains.

67

APPENDIX A. NO RESOURCE RECORDS

As a consequence of NXT records it is possible to "chain" through a
zone secured by DNS security extensions, collecting all names and/or
records in the zone. This is the main problem that motivated this
draft.

2. Context

There have been arguments that the "chain" problem of NXT records is
a non-issue. Often used is the argument that information in DNS is
public, and if you wish to keep information private, you shouldn’t
publish it in DNS. This might be true, but nonetheless major
service providers and companies are restricting access to zone
transfers. Also, people have debated whether NXT records should be
part of DNSSEC at all because of this problem [5].

Another aspect exist. When DNS is used to store certificates, as
described in RFC 2538 [2], certificates can identify individuals
and/or carry authentication information for special purposes. This
context has been the motivation for developing this draft.

The delegation considerations for NXT records (different RRsets in
the parent and child for the same domain) has also been regarded as
a flaw of the NXT records.

3. The NO Resource Record

This section describe the NO Resource Record.

3.1 Idea

A straight-forward extension to the NXT record that minimize
disclosure of information is to store a one-way function value
instead of the actual domain name. This is similar to NXT records;
where NXT records secure a interval where no existing domain names
are to be found, NO records secure a interval where no one-way value
of existing domain names are to be found.

The benefit, of course, is that an adversary does not yield any
useful information from the record. Specifically, "chaining"
through a zone to collect all records is no longer possible.

This idea has been extended in this document into allowing (but not
requiring) one record to deny existence of several records, and
truncating the hash value to the shortest unique prefix to preserve

68

space.

3.2 NO RDATA Format

The RDATA for a NO RR consists of one or more fields with the
following structure. The structure have the following elements: a
zero-terminated list of RR types, a hash length specifier, and a
hash value, as shown below. Both the "RR type" list and the "next
hash value" fields are of variable width.

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| /
/ owner RR type list /
/ |
+---------------+---+
| # hash octets | SHA-1 hash value /
+---------------+ /
/ /
+---+

Replacing the NXT RR "type bit map" field is a variable length list
of RR types. Each RR type is 16 bits. As the list is of variable
length, a end-of-list indicator is require. End of the list is
signalled by a all-zero RR type. Each element is a 2 byte RR type.
The list MUST be sorted in RR type order. The change from NXT’s
bitmap field removes the limit of authenticating only the first 127
RR types.

The RR type list indicates what types exist at the previous hash
value -- i.e. the first RR type list in the RRdata of a NO record
indicate what RR types exist at the domain name that hashes to the
owner name of that NO record. The second RR type list, if any, in
the RRdata of a NO record indicate what RR types exist at the domain
name that hashes the first SHA-1 value in the RRdata. And so on.
See below for a complete example of the on-the-wire-format of a NO
record with hash truncation and record merging and its
interpretation.

Length of the hash value field is denoted by the # hash octets
fields, it is a unsigned integer ranging from 0 to 255. The meaning
of a zero length integer is reserved.

69

APPENDIX A. NO RESOURCE RECORDS

The SHA-1 hash value field is a variable length field containing the
actual hash value.

The NO RRs for a zone SHOULD be automatically calculated and added
to the zone when SIGs are added. The NO RR’s TTL SHOULD NOT exceed
the zone minimum TTL.

The type number for the NO RR is TBD.

NO RR’s MUST only be signed by zone level keys [7].

3.3 NO RDATA on-the-wire format example

The following is a example of the on-the-wire-format of a complete
NO resource record were hash truncation and record merging is used.
It is the on-the-wire format of the NO record in section 3.13.1.2.

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| RR type 1 (A) | RR type 0 (end-of-list) |
+---------------+---+
| 1 hash octet | Hash 0x22 | RR type 2 (NS) |
+---------------+---------------+-------------------------------+
| RR type 6 (SOA) | RR type 15 (MX) |
+-------------------------------+---------------+---------------+
| RR type 0 (end-of-list) | 1 hash octet | Hash 0x83 |
+-------------------------------+---------------+---------------+
| RR type 1 (A) | RR type 0 (end-of-list) |
+---------------+---+
| 1 hash octet | Hash 0x90 | RR type 1 (A) |
+---------------+---------------+-------------------------------+
| RR type 16 (TXT) | RR type 0 (end-of-list) |
+---------------+---------------+-------------------------------+
| 1 hash octet | Hash 0x1b |
+-------------------------------+

The intepretation here is that the domain that corresponds with the
NO owner name ("1b.example.org.", not shown above) have a A record,
that the domain that hash to 0x22 (truncated to one octet) have a
NS, SOA and MX record, that the domain that hash to 0x83 (truncated
to 1 octet) have a A record etc. Note that the last hash value of NO
RRdata does not have a RR type list in the same record.

70

3.4 Owner Names

As the previous NO RR format describe, the "next domain name" of NXT
records is replaced by its hash value. This removes the possibility
of chaining both backwards and forwards through a zone.

But without also modifying the owner names of NO records it is still
not difficult to chain through a zone. Consider querying a server
for (say) "m.example.org", the reply could contain a NO record for
"g.example.org", now an adversary can lookup records for
"g.example.org", and then issue a query for a domain that would sort
(in "the canonical order" described in RFC 2535) just before
"g.example.org". Applying the technique over and over again, all
records in the zone can still be collected.

To prevent this, the owner names of NO records is replaced by its
hash value. As DNS places limits on what characters can be used in
owner names, the owner name uses a base 16 "hex" encoding [6].

In order to remove the (very small) chance of generated NO record
names colliding with existing, "real", domains, all NO records MUST
be stored directly in the "_no" domain of the zone. I.e., a zone
"example.org." store its NO records as, say,
"35a4d1._no.example.org.".

3.5 Additional Complexity Due To Wildcards

Proving that a non-existent name response is correct, or that a
wildcard expansion response is correct, makes things a little more
complex.

In particular, when a non-existent name response is returned, an NO
must be returned showing that the exact name did not exist and, in
general, one or more additional NO need to be returned to also prove
that there wasn’t a wildcard whose expansion should have been
returned. (There is no need to return multiple copies of the same
NO.) These NOs, if any, are returned in the authority section of the
response.

Furthermore, if a wildcard expansion is returned in a response, in
general one or more NOs needs to also be returned in the authority
section to prove that no more specific name (including possibly more
specific wildcards in the zone) existed on which the response should
have been based.

71

APPENDIX A. NO RESOURCE RECORDS

3.6 No Considerations at Delegation Points

When NXT records are used to deny existance, there exists a special
case at delegation points. Namely, that two distinct RRsets exist
for the same owner name, one in the parent zone and one in the child
zone.

$ORIGIN parent.example.org.
@ SOA

NS
NXT child SOA NS SIG NXT

child NS foo
NXT next NS SIG NXT

next A 127.0.0.2

$ORIGIN child.parent.example.org.
@ SOA

NS
NXT name SOA NS SIG NXT

name A 127.0.2.1
NXT child.parent.example.org.

With NO records, the parent would deny existance of domains in
"_no.parent.example" and the child in
"_no.child.parent.example.org". Thus no NO RRset collision occur.

3.7 Hash Truncation and Dynamic Updates

Entities that create NO records MAY truncate the hash field. It
MUST NOT truncate hash fields so they are no longer unique
throughout a zone. Hash truncations MUST only be done to octet
offsets. Truncation MUST be such that less significant bits are
truncated, i.e. higher-order bits are preserved (see the examples).

Zones that are dynamically updated will have to calculate and add NO
records on-the-fly. If hash truncation is used, adding a new name
to the zone will require updating (and signing) NO records for the
conflicting name(s).

As this recalculation might be quite inefficient, the use of
"shortest unique prefix" truncation in dynamically updated zones is
not recomended. However, a truncation to, say, 64 bits might be
possible if the administrators are willing to have their software

72

perform costly operations once every ~2^32 update (on average).

Since truncation (and also "compression" described in the next
section) make it impossible to predict the corresponding NO record
given a domain name, resolvers should not ask for a hashed NO record
(aaaa._no.example.org. IN NO) for a known domain name if they want
to find out what types exist at the domain. Instead, a resolver
might ask for NO records on the original name (www.example.org. IN
NO). Such records will never exist, and the correct NO record will
be returned by the server.

To summarize, the behaviour of hash truncation should be
configurable in the entity that creates NO records, to accomodate
different usage-patterns. If the zone is not intended to be
dynamicly updated, the use of hash truncation reduces size and is
recomended.

3.8 Reducing Number of Records

Entitities that create NO records MAY deny existence for several
records per NO record. Entities that create NO records should take
care so that each resulting NO record is not "too large". [Comments
on this? Should there be a specific limit? It might be left as a
DNS Operational consideration]

Merging several NO records into one record also place more work on
the resolver. Instead of parsing two hash values for each NO record
to determine if it’s applicaple, a resolver will have to parse
several hash values and compare each.

The NO RR record consist of one or more RR type list / hash values,
described above, and a resolver need to parse the entire record to
collect each individual field. I.e., a NO parse algorithm could
looke like: read RRs, stop when you read a zero RR type, read hash
length indicator, read hash size, if the entire record is read stop,
otherwise read RRs, stop when you read a zero RR type, etc..

3.9 Hash Collisions

Hash value collisions are expected not to occur. For SHA-1, the
probability that this should happen is 1 out of 2^80 on average.

However, collisions are actually only a problem if the domain names
producing the same hash value have different sets of existing types.

73

APPENDIX A. NO RESOURCE RECORDS

Consider the following records

; SHA-1(one.example.org) = SHA-1(two.example.org)

one.example.org. IN A 1.2.3.4
two.example.org. IN A 5.6.7.8

Given that no other RR types exist for neither domain, both
"one.example.org" and "two.example.org" would be authenticated not
to exist by the same NO record.

3.10 Authenticating Denial of NO Records

NO records (together with SIG records) authenticate denial for other
types in a zone. Unlike NXT records that re-use the namespace in
the zone, NO records are not intended to authenticate denial of
other NO records.

3.11 Case Considerations

Before calculating SHA-1 hash values, domain names MUST be converted
into canonical format as described in RFC 2535. This is to make hash
comparisons possible.

3.12 Presentation Format

NO RRs do not appear in original unsigned zone master files since
they should be derived from the zone as it is being signed.

If a signed file with NO records is printed or NO records are
printed by debugging code, they appear as a list of unsigned
integers or RR mnemonics, and the hash value in base 16 hex
representation [6] with "0x" prepended (to distinguish it from
integer RR codes). The zero RR that terminate the list of RR types,
and the hash value length indicator, does not appear.

See the next section for examples of printed NO RRs.

3.13 Examples

This section contain examples of NO records, using the reserved
domain exmaple.org [3].

74

3.13.1 Adding NO Records to a Zone

Consider the following zone file.

$ORIGIN example.org.
@ IN SOA ...
@ IN NS ns
@ IN MX 0 server
ns IN A ...
www IN A ...
sERVEr IN A ...
sERVEr IN TXT "text"

; SHA1(example.org.) = 0x222c7a74bc40e818aa53b3eb0b15cd2350fbb3a1
; SHA1(ns.example.org.) = 0x1b7838c69a66eb50cc215f66ee4554d0c4c940a5
; SHA1(www.example.org.) = 0x839ebd4386c0b26d81f147421b5b7036e61438cf
; SHA1(server.example.org.) = 0x906a0ad5e604b1905828499dc8672ecb8de73e2f

Note that hash values are calculcated on the canonical form.

The following two sections describe two valid ways of adding NO
records to a zone.

3.13.2 Simple NO creating entity

A simple NO creator entity might not implement truncation or provide
the possibility to deny more than one records per NO record. In
this case, the following would be added to the zone file.

$ORIGIN _no.example.org.
1b7838c69a66eb50cc215f66ee4554d0c4c940a5
IN NO A 0x222c7a74bc40e818aa53b3eb0b15cd2350fbb3a1

222c7a74bc40e818aa53b3eb0b15cd2350fbb3a1
IN NO NS SOA MX 0x839ebd4386c0b26d81f147421b5b7036e61438cf

839ebd4386c0b26d81f147421b5b7036e61438cf
IN NO A 0x906a0ad5e604b1905828499dc8672ecb8de73e2f

906a0ad5e604b1905828499dc8672ecb8de73e2f
IN NO A TXT 0x1b7838c69a66eb50cc215f66ee4554d0c4c940a5

3.13.3 Advanced NO creating entity

A more advanced NO creator entity might append the following
instead, using both truncation and "compression".

75

APPENDIX A. NO RESOURCE RECORDS

$ORIGIN _no.example.org
1b IN NO A 0x22 NS SOA MX 0x83 A 0x90 A TXT 0x1b A

Note that this contain 5 hash values while the zone only contain 4
records, the last value in the line above is in fact the first hash
value in the zone, closing the circular NO chain.

3.13.4 Resolver Query for Non-existing Domain

Consider a client looking up the non-existant domain name
"baz.example.org.", using the zone file from the previous section.
First, we note the following calculations.

SHA-1(baz.example.org.) = 0xd5d0f98783eec6e9943750f35904304bd1a4090e
SHA-1(*.example.org.) = 0x7ab3776e3b529eb42467cc5d279c88ec951cf021

A server would reply with an RCODE of NXDOMAIN and the authority
section data including the following:

; backwards compatibility
example.org. IN SOA

; prove no baz.example.org
906a0ad5e604b1905828499dc8672ecb8de73e2f.example.org.
IN NO A TXT 0x1b7838c69a66eb50cc215f66ee4554d0c4c940a5
906a0ad5e604b1905828499dc8672ecb8de73e2f.example.org. IN SIG NO

; prove no *.example.org:
222c7a74bc40e818aa53b3eb0b15cd2350fbb3a1.example.org.
IN NO NS SOA MX 0x839ebd4386c0b26d81f147421b5b7036e61438cf
222c7a74bc40e818aa53b3eb0b15cd2350fbb3a1.example.org. IN SIG NO

In order for a client to verify the authenticity of this reply, in
addition of verifying the SIG record, it will also need to calculate
the one-way hash of "baz.example.org." and verify it is contained
inside the interval of any NO record in the authority section.
Also, to prove there are no wildcard records for baz.example.org.,
NO records for possible wildcard expansions are returned. A client
should similarily calculate hash values of possible wildcards and
compare them to the authority section.

Of course, if the zone was generated with the more advanced NO
creating entity, only the NO record from the previous section would
have to be returned.

76

3.13.5 Resolver Query for Non-existing Type At Existing Domain

Consider a client looking up TXT records for the existing domain
"www.example.org.", again, using the same zone file as previous. A
server would reply with an authority section like the following:

839ebd4386c0b26d81f147421b5b7036e61438cf.example.org.
IN NO A 0x906a0ad5e604b1905828499dc8672ecb8de73e2f

839ebd4386c0b26d81f147421b5b7036e61438cf.example.org. IN SIG NO

The resolver verifies the signature and make sure
SHA-1("bar.example.org.") hashes correctly.

4. Security Considerations

Chaining through all NO records is still technically possible,
altough it cannot be used to collect names and/or records in the
zone (other than NO records themself).

The security of NO record hash values is dependent on the security
of the SHA-1 hash functions used.

It should be pointed out that given this scheme, it is easy to
estimate the number of records within a zone, considering hash
values are supposed to be equally distributed. This can be foiled
by adding any number of bogus records in the zone.

The authentication of NO records is provided by DNS SIG records, as
specified in RFC 2535. The security considerations of RFC 2535 is
not affected by this document, and should also be considered.

5. IANA Considerations

The NO RR type number should be selected by the IANA from the normal
RR type space.

The meaning of a zero hash length value can only be assigned by a
standards action.

Acknowledgements

The idea of encrypting names, that later evolved into just hashing
them, was originally proposed by Jonas Holmerin in private

77

APPENDIX A. NO RESOURCE RECORDS

discussions about DNS Security. Magnus Nyström proposed truncating
the hash values.

Thanks to John Linn and Magnus Nyström for comments on a early
version of this draft.

Olafur Gudmundsson pointed out delegation point issues, suggested
the use of a "_no" subdomain, and suggested replacing the type bit
map field with a sorted list. From the namedroppers mailing list,
I’d like to thank Andrew Draper, Andreas Gustafsson, Peter Koch and
Brian Wellington for comments and suggestions.

References

[1] Eastlake, D., "Domain Name System Security Extensions", RFC
2535, March 1999.

[2] Eastlake, D. and O. Gudmundsson, "Storing Certificates in the
Domain Name System (DNS)", RFC 2538, March 1999.

[3] Eastlake, D. and A. Panitz, "Reserved Top Level DNS Names", RFC
2606, June 1999.

[4] NIST, , "Secure Hash Standard", FIPS PUB 180-1, April 1995.

[5] Massey, D., Lehman, T. and E. Lewis, "DNSSEC Implementation in
the CAIRN Testbed.", I.D. draft-ietf-dnsop-dnsseccairn-00.txt,
October 1999.

[6] Josefsson, S.A. (editor), "Base 64, 32 and 16 Encodings", I.D.
draft-josefsson-base-encoding-00.txt, August 2000.

[7] Wellington, B, "Domain Name System Security (DNSSEC) Signing
Authority", I.D. draft-ietf-dnsext-signing-auth-01.txt, May
2000.

Author’s Address

Simon Josefsson
RSA Security
Arenavägen 29
121 29 Stockholm
Sweden

78

Phone: +46 8 7250914
EMail: sjosefsson@rsasecurity.com

Full Copyright Statement

Copyright (C) The Internet Society (2000). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph
are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC editor function is currently provided by the
Internet Society.

79

APPENDIX A. NO RESOURCE RECORDS

80

Appendix B

Sample Certificates

This appendix contains text-versions of the Certificates that were used in section
4.4.5. This is intended as a detailed reference when comparing the amount of
additional information (names, addresses etc) that was stored in the certificates we
used. The Certificates were prepared using Open SSL [23].

81

APPENDIX B. SAMPLE CERTIFICATES

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 1 (0x1)

Signature Algorithm: md5WithRSAEncryption

Issuer: O=S. Josefsson CA, OU=Class 1 Public Primary Certification Authority, CN=S. Josefsson CA

Validity

Not Before: Aug 25 10:46:59 2000 GMT

Not After : Aug 25 10:46:59 2001 GMT

Subject: CN=User 0/Email=user0@josefsson.org

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (512 bit)

Modulus (512 bit):

00:ad:68:34:e6:fb:f1:91:fa:06:53:4f:ed:e0:05:

4c:58:c8:5b:74:db:19:e0:45:4d:34:41:5d:ee:6a:

40:ab:04:75:61:57:84:88:4b:45:62:4b:28:41:76:

d9:ba:2e:b8:04:c6:b2:c7:11:d2:8d:31:07:7a:9d:

b9:ec:0a:54:75

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Subject Alternative Name:

email:user0@josefsson.org

X509v3 Basic Constraints: critical

CA:FALSE

X509v3 Authority Key Identifier:

keyid:0C:C8:A6:BD:22:C2:F5:2C:79:43:95:A2:72:FC:EB:3B:37:0E:9E:66

X509v3 Extended Key Usage:

TLS Web Client Authentication, E-mail Protection

Signature Algorithm: md5WithRSAEncryption

8f:94:d9:65:34:87:c9:3b:66:31:1a:a4:ee:dd:87:d9:f0:d2:

51:ac:f1:5b:76:53:41:53:4e:50:6b:a0:2c:8b:43:f1:f4:83:

a9:91:9b:16:00:a6:f2:10:74:e2:d8:e3:88:6d:dc:bd:d2:2f:

5c:1c:3b:aa:9b:49:92:d1:39:58

-----BEGIN CERTIFICATE-----

MIICAzCCAa2gAwIBAgIBATANBgkqhkiG9w0BAQQFADBtMRgwFgYDVQQKEw9TLiBK

b3NlZnNzb24gQ0ExNzA1BgNVBAsTLkNsYXNzIDEgUHVibGljIFByaW1hcnkgQ2Vy

dGlmaWNhdGlvbiBBdXRob3JpdHkxGDAWBgNVBAMTD1MuIEpvc2Vmc3NvbiBDQTAe

Fw0wMDA4MjUxMDQ2NTlaFw0wMTA4MjUxMDQ2NTlaMDUxDzANBgNVBAMTBlVzZXIg

MDEiMCAGCSqGSIb3DQEJARYTdXNlcjBAam9zZWZzc29uLm9yZzBcMA0GCSqGSIb3

DQEBAQUAA0sAMEgCQQCtaDFNORDR+gZTT+3gBUxYyFt02xngRU00QV3uakCrBHVh

V4SIS0ViSyhBdtm6LrgExrLHEdKNMQd6nbnsClR1AgMBAAGjcDBuMB4GA1UdEQQX

MBWBE3VzZXIwQGpvc2Vmc3Nvbi5vcmcwDAYDVR0TAQH/BAIwADAfBgNVHSMEGDAW

gBQMyKa9IsL1LHlDlaJy/Os7Nw6eZjAdBgNVHSUEFjAUBggrBgEFBQcDAgYIKwYB

BQUHAwQwDQYJKoZIhvcNAQEEBQADQQCPlNllNIfJO2YxGqTu3YfZ8NJRrPFbdlNB

U05Qa6Asi0Px9IOpkZsWAKbyEHTi2OOIbdy90i9cHDuqm0mS0TlY

-----END CERTIFICATE-----

Figure B.1. 512 bit RSA certificate.

82

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 1 (0x1)

Signature Algorithm: md5WithRSAEncryption

Issuer: O=S. Josefsson CA, OU=Class 1 Public Primary Certification Authority, CN=S. Josefsson CA

Validity

Not Before: Aug 25 10:45:37 2000 GMT

Not After : Aug 25 10:45:37 2001 GMT

Subject: CN=User 0/Email=user0@josefsson.org

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (1024 bit)

Modulus (1024 bit):

00:9b:48:7c:10:6d:49:bf:96:a1:fa:63:3c:22:21:

58:93:a1:f5:9d:d8:d8:5a:a3:f2:bb:d7:fc:18:c8:

7a:8f:ce:da:f8:82:eb:ad:c5:1a:ef:66:34:d2:56:

e2:4b:3a:82:1e:ca:68:06:95:a7:51:9a:ac:55:66:

e7:12:8c:77:cb:eb:eb:89:a0:05:73:a4:c5:df:4b:

8b:a0:db:9b:5e:5d:2f:ed:45:be:80:0d:f3:5d:90:

2b:b4:81:95:8f:ca:56:ab:41:4d:4c:7d:d5:00:03:

71:f7:3e:8b:10:6a:12:d6:3d:08:12:fe:38:c4:6c:

8d:b3:1e:85:5e:f3:c3:16:43

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Subject Alternative Name:

email:user0@josefsson.org

X509v3 Basic Constraints: critical

CA:FALSE

X509v3 Authority Key Identifier:

keyid:0C:C8:A6:BD:22:C2:F5:2C:79:43:95:A2:72:FC:EB:3B:37:0E:9E:66

X509v3 Extended Key Usage:

TLS Web Client Authentication, E-mail Protection

Signature Algorithm: md5WithRSAEncryption

5b:f7:8e:7c:0a:30:a5:71:b6:82:e3:a4:4d:24:16:0f:ef:be:

b9:28:41:a7:95:9e:cd:b3:64:f7:b4:bb:e5:89:f4:7f:fc:15:

63:b4:f6:bb:ad:42:f8:16:32:98:01:e1:67:48:f6:e9:c2:a1:

0e:b2:e9:75:d0:e4:0c:0b:d1:e3

-----BEGIN CERTIFICATE-----

MIICRzCCAfGgAwIBAgIBATANBgkqhkiG9w0BAQQFADBtMRgwFgYDVQQKEw9TLiBK

b3NlZnNzb24gQ0ExNzA1BgNVBAsTLkNsYXNzIDEgUHVibGljIFByaW1hcnkgQ2Vy

dGlmaWNhdGlvbiBBdXRob3JpdHkxGDAWBgNVBAMTD1MuIEpvc2Vmc3NvbiBDQTAe

Fw0wMDA4MjUxMDQ1MzdaFw0wMTA4MjUxMDQ1MzdaMDUxDzANBgNVBAMTBlVzZXIg

MDEiMCAGCSqGSIb3DQEJARYTdXNlcjBAam9zZWZzc29uLm9yZzCBnzANBgkqhkiG

9w0BAQEFAAOFNORDgYkCgYEAm0h8EG1Jv5ah+mM8IiFYk6H1ndjYWqPyu9f8GMh6

j87a+ILrrcUa72Y00lbiSzqCHspoBpWnUZqsVWbnEox3y+vriaAFc6TF30uLoNub

Xl0v7UW+gA3zXZArtIGVj8pWq0FNTH3VAANx9z6LEGoS1j0IEv44xGyNsx6FXvPD

FkMCAwEAAaNwMG4wHgYDVR0RBBcwFYETdXNlcjBAam9zZWZzc29uLm9yZzAMBgNV

HRMBAf8EAjAAMB8GA1UdIwQYMBaAFAzIpr0iwvUseUOVonL86zs3Dp5mMB0GA1Ud

JQQWMBQGCCsGAQUFBwMCBggrBgEFBQcDBDANBgkqhkiG9w0BAQQFAANBAFv3jnwK

MKVxtoLjpE0kFg/vvrkoQaeVns2zZPe0u+WJ9H/8FWO09rutQvgWMpgB4WdI9unC

oQ6y6XXQ5AwL0eM=

-----END CERTIFICATE-----

Figure B.2. 1024 bit RSA certificate.

83

APPENDIX B. SAMPLE CERTIFICATES

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 1 (0x1)

Signature Algorithm: md5WithRSAEncryption

Issuer: O=S. Josefsson CA, OU=Class 1 Public Primary Certification Authority, CN=S. Josefsson CA

Validity

Not Before: Aug 25 10:47:54 2000 GMT

Not After : Aug 25 10:47:54 2001 GMT

Subject: CN=User 0/Email=user0@josefsson.org

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (2048 bit)

Modulus (2048 bit):

00:eb:7b:bc:4c:5d:48:2c:80:ac:39:2e:ac:1e:9f:

88:5c:27:22:e7:3d:0a:b4:56:ca:de:90:05:2c:aa:

d7:c9:87:30:b6:8b:cb:67:07:1f:c6:51:0d:05:b0:

20:fb:0a:02:73:63:21:88:56:a8:9c:fa:f7:09:10:

c4:ea:c0:eb:49:f6:66:2b:e6:b0:cd:d7:93:b4:62:

a9:e8:5d:48:62:1e:99:ff:f2:a9:60:45:8a:02:ab:

16:50:7c:8a:ab:c7:5f:09:d8:c2:f2:02:24:90:bd:

57:2d:2c:99:be:11:69:85:d0:09:1f:98:cf:bd:a6:

bb:84:83:bc:cb:1e:55:ae:0c:29:39:1e:51:41:18:

ab:fb:4f:ff:02:b8:7a:f2:17:e0:72:61:36:28:69:

dc:e8:54:2d:b3:af:b9:65:9e:b3:25:59:17:37:66:

d5:d8:ec:ee:13:1a:6a:11:84:4b:dd:05:2b:f4:b9:

70:10:ab:ab:a3:12:2d:b7:bf:df:f3:0d:1f:cc:fe:

a9:6e:53:db:d0:e7:7a:a1:45:ff:79:c9:2e:9b:74:

0d:5a:43:2f:0b:a5:69:b9:5c:80:63:7c:04:67:bd:

26:a3:10:b2:b7:4a:07:d1:32:0b:40:fd:47:3f:61:

c4:70:45:69:ed:7f:12:d2:c8:34:76:62:1a:a2:07:

5b:cf

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Subject Alternative Name:

email:user0@josefsson.org

X509v3 Basic Constraints: critical

CA:FALSE

X509v3 Authority Key Identifier:

keyid:0C:C8:A6:BD:22:C2:F5:2C:79:43:95:A2:72:FC:EB:3B:37:0E:9E:66

X509v3 Extended Key Usage:

TLS Web Client Authentication, E-mail Protection

Signature Algorithm: md5WithRSAEncryption

89:96:56:ba:71:ee:97:3c:ee:28:a4:f8:9e:ff:eb:a1:15:01:

08:86:69:e5:b0:95:b5:fd:b6:ae:c0:b6:db:76:fd:85:e0:6e:

55:03:76:04:ac:39:7e:66:d9:c3:9c:a6:3a:76:74:9b:d6:8c:

61:5a:22:0d:f4:2f:aa:0a:52:c3

-----BEGIN CERTIFICATE-----

MIICyzCCAnWgAwIBAgIBATANBgkqhkiG9w0BAQQFADBtMRgwFgYDVQQKEw9TLiBK

b3NlZnNzb24gQ0ExNzA1BgNVBAsTLkNsYXNzIDEgUHVibGljIFByaW1hcnkgQ2Vy

dGlmaWNhdGlvbiBBdXRob3JpdHkxGDAWBgNVBAMTD1MuIEpvc2Vmc3NvbiBDQTAe

Fw0wMDA4MjUxMDQ3NTRaFw0wMTA4MjUxMDQ3NTRaMDUxDzANBgNVBAMTBlVzZXIg

MDEiMCAGCSqGSIb3DQEJARYTdXNlcjBAam9zZWZzc29uLm9yZzCCASIwDQYJKoZI

hvcNAQEBBQADggEPADCCAQoCggEBAOt7vExdSCyArDkurB6fiFwnIuc9CrRWyt6Q

BSyq18mHMLaLy2cHH8ZRDQWwIPsKAnNjIYhWqJz69wkQxOrA60n2ZivmsM3Xk7Ri

qehdSGIemf/yqWBFigKrFlB8iqvHXwnYwvICJJC9Vy0smb4RaYXQCR+Yz72mu4SD

vMseVa4MKTkeUUEYq/tP/wK4evIX4HJhNihp3OhULbOvuWWesyVZFzdm1djs7hMa

ahGES90FK/S5cBCrq6MSLbe/3/MNH8z+qW5T29DneqFF/3nJLpt0DVpDLwulablc

gGN8BGe9JqMQsrdKB9EyC0D9Rz9hxHBFae1FNORDNHZiGqIHW88CAwEAAaNwMG4w

HgYDVR0RBBcwFYETdXNlcjBAam9zZWZzc29uLm9yZzAMBgNVHRMBAf8EAjAAMB8G

A1UdIwQYMBaAFAzIpr0iwvUseUOVonL86zs3Dp5mMB0GA1UdJQQWMBQGCCsGAQUF

BwMCBggrBgEFBQcDBDANBgkqhkiG9w0BAQQFAANBAImWVrpx7pc87iik+J7/66EV

AQiGaeWwlbX9tq7Attt2/YXgblUDdgSsOX5m2cOcpjp2dJvWjGFaIg30L6oKUsM=

-----END CERTIFICATE-----

Figure B.3. 2048 bit RSA certificate.

84

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 1 (0x1)

Signature Algorithm: md5WithRSAEncryption

Issuer: O=S. Josefsson CA, OU=Class 1 Public Primary Certification Authority, CN=S. Josefsson CA

Validity

Not Before: Aug 25 10:43:17 2000 GMT

Not After : Aug 25 10:43:17 2001 GMT

Subject: CN=User 0/Email=user0@josefsson.org

Subject Public Key Info:

Public Key Algorithm: dsaEncryption

DSA Public Key:

pub:

48:62:07:ea:59:e7:8f:72:a6:af:96:8b:8a:ba:36:

76:79:16:10:c9:3b:3c:cc:be:1b:d3:bc:19:61:f0:

f1:e5:6e:f8:e4:27:57:19:36:cb:48:3f:00:9d:fc:

c0:21:ce:33:bf:7e:05:08:c2:df:c0:be:76:d1:3d:

e8:c0:1a:c5

P:

00:c4:f0:7d:21:b0:21:3f:3d:ba:36:d0:42:92:51:

0a:68:7f:a2:63:5f:34:a6:1b:62:46:22:e8:6d:47:

23:18:c5:9c:eb:0f:4a:ba:81:dc:dc:66:30:d9:d3:

83:ea:e7:3b:78:7c:00:6b:6a:5b:91:9c:0a:14:2f:

b6:0c:0e:97:dd

Q:

00:c2:50:de:0b:7d:44:f0:e9:c6:59:fa:c3:d5:ce:

fe:c0:c8:e6:ca:0b

G:

4e:aa:29:bf:ba:35:20:a8:0b:c4:72:25:b0:f6:0e:

2f:68:10:e6:e6:7b:67:4e:d0:96:bb:43:95:82:9f:

e1:ce:7b:3f:5c:b8:26:4a:c9:bb:f7:45:05:7e:c9:

f8:38:2c:50:73:64:ca:14:d7:22:3c:17:b1:38:04:

73:fa:12:d0

X509v3 extensions:

X509v3 Subject Alternative Name:

email:user0@josefsson.org

X509v3 Basic Constraints: critical

CA:FALSE

X509v3 Authority Key Identifier:

keyid:0C:C8:A6:BD:22:C2:F5:2C:79:43:95:A2:72:FC:EB:3B:37:0E:9E:66

X509v3 Extended Key Usage:

TLS Web Client Authentication, E-mail Protection

Signature Algorithm: md5WithRSAEncryption

47:ea:97:3c:5d:32:8e:f0:79:72:a8:df:34:54:a7:2c:b1:a9:

ea:16:71:94:84:38:6c:65:43:af:4e:aa:7b:af:5b:cf:5a:87:

05:42:0c:4e:21:1d:8a:12:55:5b:c6:0e:e6:57:80:81:24:1c:

33:80:8e:c9:99:08:60:7a:f1:1b

-----BEGIN CERTIFICATE-----

MIICmDCCAkKgAwIBAgIBATANBgkqhkiG9w0BAQQFADBtMRgwFgYDVQQKEw9TLiBK

b3NlZnNzb24gQ0ExNzA1BgNVBAsTLkNsYXNzIDEgUHVibGljIFByaW1hcnkgQ2Vy

dGlmaWNhdGlvbiBBdXRob3JpdHkxGDAWBgNVBAMTD1MuIEpvc2Vmc3NvbiBDQTAe

Fw0wMDA4MjUxMDQzMTdaFw0wMTA4MjUxMDQzMTdaMDUxDzANBgNVBAMTBlVzZXIg

MDEiMCAGCSqGSIb3DQEJARYTdXNlcjBAam9zZWZzc29uLm9yZzCB8DCBqAYHKoZI

zjgEATCBnAJBAMTwfSGwIT89ujbQQpJRCmh/omNfNKYbYkYi6G1HIxjFnOsPSrqB

3NxmMNnTg+rnO3h8AGtqW5GcChQvtgwOl90CFQDCUN4LfUTw6cZZ+sPVzv7AyObK

CwJATqopv7o1IKgLxHIlsPYOL2gQ5uZ7Z07QlrtDlYKf4c57P1y4JkrJu/dFBX7J

+DgsUHNkyFNORDwXsTgEc/oS0ANDAAJASGIH6lnnj3Kmr5aLiro2dnkWEMk7PMy+

G9O8GWHw8eVu+OQnVxk2y0g/AJ38wCHOM79+BQjC38C+dtE96MAaxaNwMG4wHgYD

VR0RBBcwFYETdXNlcjBAam9zZWZzc29uLm9yZzAMBgNVHRMBAf8EAjAAMB8GA1Ud

IwQYMBaAFAzIpr0iwvUseUOVonL86zs3Dp5mMB0GA1UdJQQWMBQGCCsGAQUFBwMC

BggrBgEFBQcDBDANBgkqhkiG9w0BAQQFAANBAEfqlzxdMo7weXKo3zRUpyyxqeoW

cZSEOGxlQ69OqnuvW89ahwVCDE4hHYoSVVvGDuZXgIEkHDOAjsmZCGB68Rs=

-----END CERTIFICATE-----

Figure B.4. 512 bit DSA certificate.

85

APPENDIX B. SAMPLE CERTIFICATES

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 1 (0x1)

Signature Algorithm: md5WithRSAEncryption

Issuer: O=S. Josefsson CA, OU=Class 1 Public Primary Certification Authority, CN=S. Josefsson CA

Validity

Not Before: Aug 25 10:35:12 2000 GMT

Not After : Aug 25 10:35:12 2001 GMT

Subject: CN=User 0/Email=user0@josefsson.org

Subject Public Key Info:

Public Key Algorithm: dsaEncryption

DSA Public Key:

pub:

3e:f8:dd:27:33:e9:dd:e9:04:4d:25:39:26:4c:78:

42:18:88:15:b6:65:8b:3d:22:d4:72:73:fb:0d:5d:

6e:fa:d4:d7:6f:02:35:ec:49:65:c4:8e:26:43:7e:

07:47:90:a0:5f:04:f1:7e:88:65:7a:e5:5b:f7:c6:

40:19:cb:8e:b2:2f:da:a5:96:60:51:2e:2e:55:ff:

5d:eb:be:40:ca:d4:1a:31:2e:ea:a2:8a:02:56:33:

9e:89:3a:99:5a:5f:01:dc:1d:b2:81:1f:22:ba:1d:

c5:2f:39:49:27:d2:ac:7b:68:f0:a1:4e:46:30:e8:

2a:54:9b:37:9e:87:93:83

P:

00:d2:93:cf:b3:9d:1a:61:ae:f5:4b:55:39:b3:c8:

88:3e:10:28:d2:81:4f:11:a6:c3:32:6b:cf:bc:4a:

cd:6f:0a:4c:39:52:4d:7b:f7:b5:36:49:07:ff:64:

2b:9d:50:6b:4c:3a:2e:1f:1d:fa:1e:a6:9b:71:40:

ef:f9:e5:dd:32:27:c8:b5:6b:52:6f:d9:cf:f3:96:

c0:ed:ee:e5:a2:39:99:c5:76:fb:83:cf:3f:ad:cb:

7e:a5:6f:a6:34:67:c6:fe:c7:ed:fb:4b:ef:e3:d3:

ec:e3:19:15:e0:74:9f:b2:a6:32:43:dc:75:2a:6f:

c4:e0:65:e9:6c:45:14:06:1f

Q:

00:c4:fc:6a:88:d3:93:5b:df:16:55:70:54:ca:f7:

56:2f:72:2a:fd:87

G:

19:37:a5:2a:2b:23:9b:69:ae:b3:90:56:54:e4:4a:

e9:7e:9e:38:e2:83:98:84:1c:46:40:0e:6d:2d:95:

4c:0e:38:83:7f:78:4c:29:a3:03:5c:1d:5b:b9:13:

1b:57:4b:c8:97:a0:e1:e4:db:a6:bb:5e:60:02:e5:

16:f9:76:c1:02:f7:24:fa:4a:ed:ca:b2:f1:14:35:

54:0b:53:f8:60:c7:ac:a9:6e:fd:4c:36:3f:5d:8d:

d3:3a:7a:63:53:d0:1a:c4:df:2f:3b:46:d1:ff:87:

cd:03:ef:f9:3d:e0:fb:12:5f:75:12:f0:2d:ed:e1:

55:a0:6c:cf:1d:d5:d9:bf

X509v3 extensions:

X509v3 Subject Alternative Name:

email:user0@josefsson.org

X509v3 Basic Constraints: critical

CA:FALSE

X509v3 Authority Key Identifier:

keyid:0C:C8:A6:BD:22:C2:F5:2C:79:43:95:A2:72:FC:EB:3B:37:0E:9E:66

X509v3 Extended Key Usage:

TLS Web Client Authentication, E-mail Protection

Signature Algorithm: md5WithRSAEncryption

69:4c:80:55:c4:61:16:14:72:21:aa:56:2d:d7:da:46:75:84:

c0:36:5d:b4:dd:ba:d5:3a:cb:34:9c:7b:c4:d8:75:66:ab:d2:

53:6c:0b:79:76:9d:51:07:30:0f:48:4c:54:77:68:43:df:5b:

9b:59:db:04:5b:2d:c8:0a:56:04

-----BEGIN CERTIFICATE-----

MIIDXzCCAwmgAwIBAgIBATANBgkqhkiG9w0BAQQFADBtMRgwFgYDVQQKEw9TLiBK

b3NlZnNzb24gQ0ExNzA1BgNVBAsTLkNsYXNzIDEgUHVibGljIFByaW1hcnkgQ2Vy

dGlmaWNhdGlvbiBBdXRob3JpdHkxGDAWBgNVBAMTD1MuIEpvc2Vmc3NvbiBDQTAe

Fw0wMDA4MjUxMDM1MTJaFw0wMTA4MjUxMDM1MTJaMDUxDzANBgNVBAMTBlVzZXIg

MDEiMCAGCSqGSIb3DQEJARYTdXNlcjBAam9zZWZzc29uLm9yZzCCAbYwggErBgcq

hkjOOAQBMIIBHgKBgQDSk8+znRphrvVLVTmzyIg+ECjSgU8RpsMya8+8Ss1vCkw5

Uk1797U2SQf/ZCudUGtMOi4fHfoepptxQO/55d0yJ8i1a1Jv2c/zlsDt7uWiOZnF

dvuDzz+ty36lb6Y0Z8b+x+37S+/j0+zjGRXgdJ+ypjJD3HUqb8TgZelsRRQGHwIV

AMT8aojTk1vfFlVwVMr3Vi9yKv2HAoGAGTelKisjm2mus5BWVORK6X6eOOKDmIQc

RkAObS2VTA44g394TCmjA1wdW7kTG1dLyJeg4eTbprteYALlFvl2wQL3JPpK7cqy

8RQ1VAtT+GDHrKlu/Uw2P12N0zp6Y1PQGsTfLzFNORDHzQPv+T3g+xJfdRLwLe3h

VaBszx3V2b8DgYQAAoGAPvjdJzPp3ekETSU5Jkx4QhiIFbZliz0i1HJz+w1dbvrU

128CNexJZcSOJkN+B0eQoF8E8X6IZXrlW/fGQBnLjrIv2qWWYFEuLlX/Xeu+QMrU

GjEu6qKKAlYznok6mVpfAdwdsoEfIrodxS85SSfSrHto8KFORjDoKlSbN56Hk4Oj

cDBuMB4GA1UdEQQXMBWBE3VzZXIwQGpvc2Vmc3Nvbi5vcmcwDAYDVR0TAQH/BAIw

ADAfBgNVHSMEGDAWgBQMyKa9IsL1LHlDlaJy/Os7Nw6eZjAdBgNVHSUEFjAUBggr

BgEFBQcDAgYIKwYBBQUHAwQwDQYJKoZIhvcNAQEEBQADQQBpTIBVxGEWFHIhqlYt

19pGdYTANl203brVOss0nHvE2HVmq9JTbAt5dp1RBzAPSExUd2hD31ubWdsEWy3I

ClYE

-----END CERTIFICATE-----

Figure B.5. 1024 bit DSA certificate.

86

Certificate:

Data:

Version: 3 (0x2)

Serial Number:

2e:10:37:03:df:46:85:9d:7a:55:0d:a6:59:61:85:38

Signature Algorithm: md5WithRSAEncryption

Issuer: O=VeriSign, Inc., OU=VeriSign Trust Network, OU=www.verisign.com/repository/RPA Incorp. By Ref.,LIAB.LTD(c)98,

CN=VeriSign Class 1 CA Individual Subscriber-Persona Not Validated

Validity

Not Before: Jun 26 00:00:00 2000 GMT

Not After : Aug 25 23:59:59 2000 GMT

Subject: O=VeriSign, Inc., OU=VeriSign Trust Network, OU=www.verisign.com/repository/RPA Incorp. by Ref.,LIAB.LTD(c)98,

OU=Persona Not Validated, OU=Digital ID Class 1 - Netscape, CN=Simon Josefsson/Email=simon@josefsson.org

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (1024 bit)

Modulus (1024 bit):

00:c9:0c:ce:8a:fe:71:46:9b:ca:1d:e5:90:12:a5:

11:0b:c6:2d:c4:33:c6:19:e8:60:59:4e:3f:64:3d:

e4:f7:7b:b0:be:f9:10:07:e9:7c:a6:c6:5a:51:33:

24:97:7b:a3:e1:08:b4:52:b6:06:10:7d:65:df:6e:

52:bd:81:3f:39:ad:b3:ad:17:13:88:22:e7:43:8c:

39:b7:c2:c4:ba:4a:8b:54:15:49:55:a4:4d:cc:00:

56:7b:c8:63:4e:37:de:fb:79:0f:45:dc:e9:5c:cd:

70:f0:64:42:35:84:db:e6:59:a4:cb:4b:fe:0f:47:

28:0c:35:11:a9:40:fc:ba:a5

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Basic Constraints:

CA:FALSE

X509v3 Certificate Policies:

Policy: 2.16.840.1.113733.1.7.1.8

CPS: https://www.verisign.com/rpa

Netscape Cert Type:

SSL Client

2.16.840.1.113733.1.6.3:

.vd4652bd63f2047029298763c9d2f275069c7359bed1b059da75bc4bc9701747da5d5e4141beadb2bd2e88317af7bf5d5114997a3bf45f8f3ea450c

X509v3 CRL Distribution Points:

URI:http://crl.verisign.com/class1.crl

Signature Algorithm: md5WithRSAEncryption

09:38:2f:57:9e:91:a4:d2:42:d9:d7:44:c1:d8:17:14:49:00:

69:9f:6b:e4:95:93:35:fd:96:76:ff:8b:bf:9e:dd:05:6b:82:

b2:f3:af:0f:f8:a0:2f:8d:65:08:27:54:d4:8f:47:79:c9:be:

d9:f9:ce:af:7f:2a:06:17:26:f3:b9:e6:74:ba:b9:35:3e:36:

56:5d:41:9c:ce:68:fc:db:c5:31:42:09:32:37:e7:b7:2e:a4:

c5:51:e5:fe:e5:45:59:0c:44:ca:ce:ad:77:24:52:b4:78:5f:

cc:4f:15:a7:8f:20:81:56:65:08:50:37:75:bc:a2:11:82:72:

48:76

-----BEGIN CERTIFICATE-----

MIIEhDCCA+2gAwIBAgIQLhA3A99GhZ16VQ2mWWGFODANBgkqhkiG9w0BAQQFADCB

zDEXMBUGA1UEChMOVmVyaVNpZ24sIEluYy4xHzAdBgNVBAsTFlZlcmlTaWduIFRy

dXN0IE5ldHdvcmsxRjBEBgNVBAsTPXd3dy52ZXJpc2lnbi5jb20vcmVwb3NpdG9y

eS9SUEEgSW5jb3JwLiBCeSBSZWYuLExJQUIuTFREKGMpOTgxSDBGBgNVBAMTP1Zl

cmlTaWduIENsYXNzIDEgQ0EgSW5kaXZpZHVhbCBTdWJzY3JpYmVyLVBlcnNvbmEg

Tm90IFZhbGlkYXRlZDAeFw0wMDA2MjYwMDAwMDBaFw0wMDA4MjUyMzU5NTlaMIIB

CDEXMBUGA1UEChMOVmVyaVNpZ24sIEluYy4xHzAdBgNVBAsTFlZlcmlTaWduIFRy

dXN0IE5ldHdvcmsxFNORDgNVBAsTPXd3dy52ZXJpc2lnbi5jb20vcmVwb3NpdG9y

eS9SUEEgSW5jb3JwLiBieSBSZWYuLExJQUIuTFREKGMpOTgxHjAcBgNVBAsTFVBl

cnNvbmEgTm90IFZhbGlkYXRlZDEmMCQGA1UECxMdRGlnaXRhbCBJRCBDbGFzcyAx

IC0gTmV0c2NhcGUxGDAWBgNVBAMUD1NpbW9uIEpvc2Vmc3NvbjEiMCAGCSqGSIb3

DQEJARYTc2ltb25Aam9zZWZzc29uLm9yZzCBnzANBgkqhkiG9w0BAQEFAAOBjQAw

gYkCgYEAyQzOiv5xRpvKHeWQEqURC8YtxDPGGehgWU4/ZD3k93uwvvkQB+l8psZa

UTMkl3uj4Qi0UrYGEH1l325SvYE/Oa2zrRcTiCLnQ4w5t8LEukqLVBVJVaRNzABW

e8hjTjfe+3kPRdzpXM1w8GRCNYTb5lmky0v+D0coDDURqUD8uqUCAwEAAaOCASYw

ggEiMAkGA1UdEwQCMAAwRAYDVR0gBD0wOzA5BgtghkgBhvhFAQcBCDAqMCgGCCsG

AQUFBwIBFhxodHRwczovL3d3dy52ZXJpc2lnbi5jb20vcnBhMBEGCWCGSAGG+EIB

AQQEAwIHgDCBhgYKYIZIAYb4RQEGAwR4FnZkNDY1MmJkNjNmMjA0NzAyOTI5ODc2

M2M5ZDJmMjc1MDY5YzczNTliZWQxYjA1OWRhNzViYzRiYzk3MDE3NDdkYTVkNWU0

MTQxYmVhZGIyYmQyZTg4MzE3YWY3YmY1ZDUxMTQ5OTdhM2JmNDVmOGYzZWE0NTBj

MDMGA1UdHwQsMCowKKAmoCSGImh0dHA6Ly9jcmwudmVyaXNpZ24uY29tL2NsYXNz

MS5jcmwwDQYJKoZIhvcNAQEEBQADgYEACTgvV56RpNJC2ddEwdgXFEkAaZ9r5JWT

Nf2Wdv+Lv57dBWuCsvOvD/igL41lCCdU1I9Hecm+2fnOr38qBhcm87nmdLq5NT42

Vl1BnM5o/NvFMUIJMjfnty6kxVHl/uVFWQxEys6tdyRStHhfzE8Vp48ggVZlCFA3

dbyiEYJySHY=

-----END CERTIFICATE-----

Figure B.6. VeriSign 1024 bit RSA certificate.

87

APPENDIX B. SAMPLE CERTIFICATES

88

Appendix C

Benchmarking Tool

This appendix contains source code of the benchmarking tool used in 4.4.6. It is
included here for inspection of how the test proceeded, points to note are that only
TCP is used in the DNS case and that the TCP connection is closed between every
connection.

/* DNS/LDAP performance program,
* by Simon Josefsson <sjosefsson@rsasecurity.com>
*
* Compile with
*
* cc -g -o bench bench.c dnssec.c res_searchN.c -lresolv -lldap -llber -pg -a
*
* If running on linux, you need to run this:
*
* sysctl -w net.ipv4.ip_local_port_range="1024 30000"
*
* otherwise DNS will flood your local tcp ports.
*
* Example:
*
* ./bench ldap 172.16.13.119 "cn=User 5, dc=josefsson, dc=org" 5000
* ./bench dns 172.16.13.119 user5.josefsson.org 5000
*/

89

APPENDIX C. BENCHMARKING TOOL

#include <stdio.h>
#include <stdlib.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>
#include <netdb.h>
#include "dnssec.h"
#include <lber.h>
#include <ldap.h>

#define USAGE "Usage: %s dns <server> <domain name> <iterations>\n" \
" ldap <server> <ldap address> <iterations>\n"

int
ldap (int argc, char *argv[])
{

LDAP *ld;
LDAPMessage *result, *e;
BerElement *ber;
char *a, *dn;
char **vals;
int i = 0;
char *attrs[2];

for (;;)
{

if ((ld = ldap_init(argv[2], LDAP_PORT)) == NULL) {
perror("ldap_init");
return 1;

}

if (ldap_simple_bind_s(ld, NULL, NULL) != LDAP_SUCCESS) {
ldap_perror(ld, "ldap_simple_bind_s");
return 1;

}

attrs[0] = "usercertificate;binary";
attrs[1] = NULL;

if (ldap_search_s(ld, argv[3], LDAP_SCOPE_SUBTREE,
"(objectClass=*)", attrs, 0,
&result) != LDAP_SUCCESS) {

ldap_perror(ld, "ldap_search_s");
return 1;

}

90

e = NULL;
e = ldap_first_entry(ld, result);
if (!e) {

fprintf(stdout, "no answer in query\n");
return 1;

}

vals = NULL;
vals = ldap_get_values(ld, e, "usercertificate;binary");
if (!vals) {

fprintf(stdout, "no answer in query\n");
return 1;

}

ldap_msgfree(result);
ldap_unbind(ld);

if ((i % 100) == 0) {
printf("Query ok %d...\r", i); fflush(stdout);

}
i++;
if (i == atoi(argv[4])) {

fprintf(stdout, "Ok, done %d iterations\n", atoi(argv[4]));
return 0;

}
}

return 1;
}

int
dns (int argc, char *argv[])
{

struct rrinfo *rr, *r, rhint;
extern int h_errno;
struct hostent *h;
int i = 0;

bzero (&rhint, sizeof (struct rrinfo));

res_init();
_res.options |= RES_USEVC; // use TCP
//_res.options |= RES_STAYOPEN; // do not use! apples and oranges

h = gethostbyname(argv[2]);

91

APPENDIX C. BENCHMARKING TOOL

if (!h)
fprintf(stderr, "Can’t find name server ’%s’!\n", argv[2]);

else {
_res.nsaddr_list[0].sin_addr.s_addr =

((struct in_addr*) h->h_addr_list[0])->s_addr;
}

for (;;)
{

if (getcertinfo (argv[3], NULL, &rr) != 0) {
fprintf(stderr, "query failed. h_errno = %d\n", h_errno);
return 1;

}

{
int flag = 0;

for (r = rr; r; r = r->next)
if (r->type == T_CERT)
{

flag = 1;
}

if (!flag) {
fprintf(stderr, "No answer in response...\n");
return 1;

}
}
freerrinfo (rr);

if ((i % 100) == 0) {
printf("Query ok %d...\r", i); fflush(stdout);

}
i++;
if (i == atoi(argv[4])) {

fprintf(stdout, "Ok, done %d iterations\n", atoi(argv[4]));
return 0;

}
}

return 1;
}

92

int
main (int argc, char *argv[])
{

int ret = 0;
int i;

if (argc < 5) {
printf(USAGE, argv[0]);
return 1;

}

if (strcmp(argv[1], "dns") == 0) {
ret = dns(argc, argv);

} else if (strcmp(argv[1], "ldap") == 0) {
ret = ldap(argc, argv);

} else {
printf("Syntax error\n");
printf(USAGE, argv[0]);
ret = 1;

}

return ret;
}

93

	Preface
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Outline of the Report

	2 Background
	2.1 Cryptography
	2.2 Internet and the Domain Name System
	2.3 Public Key Infrastructure
	2.4 Domain Name System
	2.5 Electronic Messaging
	2.5.1 Secure Electronic Messaging
	2.5.2 Multipurpose Internet Mail Extension
	2.5.3 Privacy Enhanced Mail
	2.5.4 Pretty Good Privacy
	2.5.5 Security Multiparts for MIME
	2.5.6 Secure MIME

	3 Use Cases
	3.1 Email Client
	3.2 Certificate Publishing

	4 LDAP and DNS as Certificate Directories
	4.1 Why Focus on LDAP and DNS?
	4.1.1 How the Certificates are Used
	4.1.2 How the Directory is Used

	4.2 Locating Certificates
	4.2.1 Certificate Naming
	4.2.2 Lightweight Directory Access Protocol
	4.2.3 Domain Name System

	4.3 Updating Certificates in a Directory
	4.3.1 Updating in LDAP
	4.3.2 Updating in DNS
	4.3.3 Conclusions

	4.4 Performance and Overhead
	4.4.1 Caching in DNS and How it Affects Certificate Lookup
	4.4.2 The Domain Name System Protocol
	4.4.3 The Lightweight Directory Access Protocol
	4.4.4 Round Trips
	4.4.5 Packet Size
	4.4.6 Computer Resource Utilization

	5 DNS Security Considerations
	5.1 Secure DNS
	5.1.1 Data Non-existence
	5.1.2 NXT Chaining

	5.2 Data Non-existence with Minimum Disclosure
	5.3 Implementing the Idea in DNS

	6 Conclusions
	Bibliography
	Index
	Appendices
	A NO Resource Records
	B Sample Certificates
	C Benchmarking Tool

