GS2: Bridge be

tween SASL and GSS-API

Simon Josefsson <simon@josefsson.org>

* Background, XML source, timeline, etc:
— http://josefsson.org/sasl-gs2/

* Draft -00 posted
* Draft -01 posted

| Feb-06.
- Jun-06.

— I picked one sol
e Section 5

ution to solve Channel Bindings

— No other changes

* On-list discussions after -01 was posted

— Resulted 1n simplified channel binding section
— DO NOT read -01, read the text posted to the list and

available in the

URL above (and 1n later slides).



GS2: Bridge between SASL and GSS-API

Simon Josefsson <simon@josefsson.org>

* Open Issue before the WGLC: Channel Binding

* Design and the text itself — posted to the list

* Syntax of channel binding data used for TLS
— In -01 and -02: Use TLS PREF to derive data
— Alternative: reference draft-ietf-nfsv4-channel-bindings-04.txt
* However, not ready — no syntax defined
* Proposes to use client/server finished messages as CB
* The client/server finished messages is the first encrypted
messages sent under TLS encryption.
e Difficult to implement for me in GNU SASL and GnuTLS
* Seems less robust from a security analysis point of view.
* The PRF output is well-defined, disclosing the
encrypted client/server finished messages should be
review further to make sure it is a good 1dea.
— I prefer to reference Nico's draft, if it uses the TLS PRF

— Update examples with channel bindings



Appendix

e For reference...

* Section 5 — next slide
— “Channel Bindings”

e Section 5.1 — slide after next slide
— “Name of TLS Channel For Use As Channel Binding”



5. Channel Bindings

The GS2 mechanism provide its own channel binding mechanism, instead of using the
"chan_binding" parameter in the GSS-API context functions. The reason for this is that the
GS2 mechanism provide an option to proceed even if the channel bindings does not match.
The GSS-API framework specifies that authentication cannot proceed if channel bindings
does not match.

Client and servers MUST set the "chan_binding" parameter in the calls to GSS_Init_sec_context
to GSS_Accept_sec_context, respectively, to NULL.

Implementations SHOULD set the "client_cbqops" and "server_cbqops" to no security layer and
instead depend on the session security afforded by the bound-in channel.

Use of no SASL security layers in combination with channel binding should provide better
performance than using SASL security layers over secure channels, and better security
characteristics than using no SASL security layers over secure channels without channel
binding. For more discussions of channel bindings, see [16].

For TLS, the channel binding data is specified below. For other security layers, channel binding
data will have to specified elsewhere, and this specification will have to be updated with
explicit considerations.



5.1. Name Of TLS Channel For Use As Channel Binding

The TLS Pseudo-Random Function (PRF) generate, using the constant string
"TLS channel binding", and based on the master secret and the random
values established during a TLS handshake, a 64 octet string that make up
the SASL channel binding data.

Using the terminology of TLS [13], the channel binding data is computed as
follows:

ChannelBinding =
PRF (SecurityParameters.master_secret,
"TLS channel binding",
SecurityParameters.server_random +

SecurityParameters.client_random) [0..64];

The derived ChannelBinding is intended to be used as a name of the TLS
channel that 1s cryptographically bound to the channel, for use in
authentication mechanisms tunneled over TLS.



