On Active Attacks to Kerberos Telnet

Simon Josefsson, RSA Laboratories

August 27, 2001

Abstract

We present a well-known and well-documented weakness against active attacks in
the Telnet Authentication and Encryption Protocol framework, and discuss the
consequences for Kerberos (version 4 and 5) Telnet. We recognize that the weakness
can ultimately be used by a active attacker to fool Kerberos Telnet users in some
implementations. We briefly describe the protocols involved, the weakness, and
demonstrate how it can be used to impersonate a server. We conclude with a
recommendation on how to solve the identified problem.

1 Introduction

The Telnet Protocol [1] provides a generic communications facility, primarily used
to interface terminal devices with terminal-oriented processes to each other. Im-
plementations of the protocol are often used to perform remote work on Unix-like
computers or routers. The core protocol does not support authentication, data
encryption nor data integrity. Two framework documents, Telnet Authentication
Option [6] and Telnet Data Encryption Option [[d], describe how the core protocol
may be enhanced with authentication, encryption or data integrity. Several authen-
tication mechanisms have been specified within the framework, but we will focus
only on the Kerberos version 4 mechanism [4]f] and the Kerberos version 5 [6] mech-
anism. Both of these authentication mechanisms also provide keying material for
use by the Telnet Encryption option.

The authentication framework specified in [5] describes a three-step authentication
process. We will give a brief description here, using a simplified notation of Telnet
commands for legibility. Readers familiar with the Telnet protocol and the Au-
thentication Option in particular should note that when we talk about the WILL,
DO, WONT, DONT authentication command, we are referring to the IAC *
AUTHENTICATE commands. When we talk about the SEND, NAME, IS,
REPLY commands, we refer to the IAC SB AUTHENTICATION * IAC SE
commands. Also, we will talk about these commands as being sent individually,
when in practice they are usually bundled together with other commands. The
three steps of the authentication protocol are:

!The Kerberos 4 mechanism uses a earlier version of the framework [3], but it is similar and compatible
with the [5] framework. The latter version add a option of enhancing the encryption negotiation.

e Negotiation of whether authentication is to be used at all. This step uses the
WILL, DO, WONT, and DONT authentication commands.

e Transfer of server-supported authentication mechanisms. This step uses the
SEND authentication command.

e Transfer of account name, and mechanism specific data which is used to per-
form the actual authentication. This step uses the NAME, IS, and REPLY
authentication commands.

The client begins by sending the WILL authentication command to signal that it
wishes to initiate authentication. It expects a DO or DONT command in return.
The DO command indicates that authentication is supported by the server and that
the client should proceed with authentication. The DONT command indicates that
the server is not willing to negotiate authentication. If DO is not received, the client
aborts its attempts of negotiating authentication. These commands are not integrity
protected.

In the second step, the server sends the SEND command which contain a ordered
list of acceptable (to the server) authentication and encryption options. Each entry
include indicators for which authentication mechanism to use (e.g. Kerberos 4 or
Kerberos 5); if mutual or client-only authentication should be used; and how en-
cryption should be negotiated. Note that the ordered list is not integrity protected,
an attacker may remove entries or re-order the list at will. The specification suggest
that the ordered list may be integrity protected by the mechanism, however neither
the Kerberos 4 or the Kerberos 5 Telnet Authentication Protocols implement this
feature.

The clients selects one of the authentication mechanisms supported by the server,
and commences step three. In the Kerberos case, the account name is transferred
using a NAME command. Then a Kerberos structure called KRB_AP_REQ is
sent in the IS authentication command. The KRB_AP_REQ structure contains
authentication information and keying material. It also contains a check sum cal-
culated on the authentication type chosen by the client. This indicates that some
attempts to protect from active attackers were made. However, we will see that
leaving the server authentication list unprotected may leave enough room to mount
an attack in practice.

The Telnet Encryption Option [[7] is similar to the Telnet Authentication Option,
the first step negotiate whether encryption should be used at all or not. It uses
the WILL, DO, WONT, and DONT encryption commands. The client sends a
WILL encryption command indicating that it is willing to send encrypted data, and
a DO encryption command indicating it is willing to receive encrypted data. The
client expects a WILL and DO response back from the server, indicating that the
server is also willing to send and receive encrypted data. The WONT and DONT
commands are sent when the sender refuses to send or receive encrypted data.
Once the parties has agreed to use encryption, the Telnet Encryption framework
proceeds similar to the authentication framework, by negotiation which encryption
mechanism to use, and then the parameters for that mechanism.

2 Exploiting the weakness

The weaknesses in the negotiation phase, that the list of server supported authen-
tication and encryption mechanisms is not integrity protected, can be exploited in
current implementationsf. We describe the simplest attack, where we are able to
disable the Telnet Encryption option — which is responsible for negotiating data en-
cryption and optionally data integrityf] — and ultimately impersonate a server from
the point of view of the end user.

By intercepting the (unprotected) WILL and DO commands sent by the server, the
Telnet client is fooled into a state where it does not proceed to require negotiation
of the encryption option even though this was requested by the user. Once the
mutual authentication is done, it is possible to cover up for the disabled Encryption
option by inserting data into the stream that resembles those messages inserted
by the client to inform the user that encryption has been enabled. This step is of
no theoretical interest, most users expect that encryption is properly negotiated if
she requests it, and that a error or at least a warning is given if encryption isn’t
enabled. There is a lesson to be learned here though: Never reuse a stream for both
insecure data and security information. The user will not be able to tell whether
the security information was sent by the possibly insecure remote system (which
may be a attacker) or generated by the locally trusted application.

Once any encryption and integrity functionality has been disabled, it is trivial to
hijack the session. The following is a excerpt from a terminal session where a user
requests a remote session, which is overtaken by a active attacker. The output to
the user looks identical to when a mutual authenticated and encrypted channel is
opened. In the text below, the session is hijacked right after the mutual authentica-
tion, and the active attacker inserts the encryption status information and removes
a security warning from the remote system. Familiarity with the Kerberos Telnet
system is necessary to appreciate it.

alice$ telnet -x bob.example.com

Encryption is verbose

Trying 10.0.0.1...

Connected to bob.example.com.

Escape character is ’7]’.

[Trying mutual KERBEROS5 (host/bob.example.com@EXAMPLE.COM)...]
[Kerberos V5 accepts you as ‘‘alice@EXAMPLE.COM’’]

[Output is now encrypted with type DES_CFB64]

[Input is now decrypted with type DES_CFB64]

eve$

Varying this approach, we was able to come up with a similar attack against Ker-

2The implementations are KTH Kerberos 4 version 1.0.9 [8] and Heimdal Kerberos 5 version 0.4d [9].
They are used in the FreeBSD, NetBSD and OpenBSD operating systems.

3For efficiency reasons, most of the currently defined encryption mechanisms do not provide data
integrity.

beros V4 Telnet. Apparently, tricking the client into using client-only authenti-
cation, by modifying the Authentication negotiation, disables the attempt to use
encryption (even though encryption was requested by the user). However, the Ker-
beros V4 authentication mechanism actually negotiates a mutually agreed key dur-
ing the server authentication phase, so the logic of disabling encryption when mutual
authentication is unsuccessful is not necessary (and is indeed harmful as it opens
up for the attack).

3 Conclusions

The attack we have seen is made possible by combining two things:

e Protocol issue: The phase that negotiate which authentication and encryption
scheme should be used is not protected by the mechanism that is eventually
chosen.

e Implementation issue: The Kerberos Telnet client should not override user
requested security level (i.e. requesting encryption) based on unprotected net-
work data.

This first is well-known and well-documented weakness in the Authentication and
Encryption Options. The Authentication option specifications suggests that the en-
tire negotiation phase may be protected by a check sum by the mechanism. Neither
the Kerberos V4 or the Kerberos V5 Telnet protocols implement this. This results
in a unwanted characteristic in a security negotiation protocol: It is impossible to
know whether the eventually selected authentication and encryption suite was the
strongest one possible. The reasonable approach in a client, to only accept client-
only authentication if mutual authentication was not available, cannot be securely
implemented in this protocol. The client is not able to distinguish between the case
when no server-side authentication is available and the case when it is under attack.
A prudent Kerberos Telnet client has to consider an authentication announcement
which lacks mutual authentication as possibly being under attack. Ideally, Kerberos
V4 and V5 Telnet Authentication should not leave themselves open to these attacks.
However, the Kerberos Telnet specifications does not claim to protects from this at-
tack, so we do not claim to have “broken” it, but we do feel that this is a unwanted
characteristic of a security protocol that warrant some concern.

To exemplify to what extent the weakness is known, we quote part of the security
considerations for the Telnet Encryption Option [7]:

The ENCRYPT option used in isolation provides protection against
passive attacks, but not against active attacks. In other words,
it will provide protection from someone who is just watching the IP
packets as they pass through the network. However, a attacker who
is able to modify packets in flight could prevent the ENCRYPT
option from being negotiated.

This flaw can be remedied by using the Telnet Authentication option
alongside the ENCRYPT option. Specifically, setting
ENCRYPT_USING_TELOPT in the authentication-type-pair can be used to
force that Encryption be negotiated even in the face of active
attacks.

It is not stated explicitly, but the suggested remedy assumes that the Telnet Au-
thentication option is being integrity protected, otherwise the active attacker is able
to modify the Telnet Authentication option as well. This is were the Kerberos Tel-
net Authentication Option fails, it does protect the Telnet Authentication option
from the client to the server, but the initial list of supported mechanisms from the
server to the client is never protected. Hence whenever a client and server accepts
weaker mechanisms, an attacker is able to force the weaker mechanism to be used.
Since the list sent by the server is an ordered list, in practice servers include all the
mechanisms they are able to support, thus letting the client (or an attacker) pick
the “best” one. This is unlike TLS [I0] that protects the entire negotiation phase
from any tampering.

Since the attack was based on combining two different ideas, we identify two solu-
tions that prevent the possibility of combining them into a successful attack:

e The negotiation of the authentication option should be protected by a Kerberos
check sum. The current specification can be updated as follows: If client-only
authentication is chosen, we suggest that a additional command is sent from
the server to the client containing a check sum of the initial list of support
authentication mechanisms. If mutual authentication is chosen, we suggest
that the server RESPONSE command should also contain a Kerberos check
sum of the initial list. If ENCRYPT_MASK of [5] is used, these changes
can be used to protect the encryption negotiation as well.

e Correct the implementation to enforce that encryption is successfully nego-
tiated if the user requests encryption, and that the connection attempt is
aborted if encryption cannot be negotiated. Also, clients should assume that
servers which do not announce mutual authentication may be under attack
(unless the protocol is updated as above). If it is acceptable to continue or
not in this case should be up to client policy. In many environments it would
be better if the Telnet client refuse unencrypted or client-only authenticated
connections by default.

Ideally both solutions should be implemented, but either one of them will suffice.
The first approach is needed to make the Kerberos authentication protocol more
cryptographically sound by itself. We recognize that keeping backwards compati-
bility may be the deciding factor here.

References

1]

J. Postel and J. Reynolds, TELNET Protocol Specification, RFC 854, May 1983,
http://www.ietf.org/rtc/rtc854.txt.

J Kohl and C. Neuman, The Kerberos Network Authentication Service (V5),
RFC 1510, September 1993, http://www.ietf.org/rfc/rfc1510.txt.

D. Borman, Telnet Authentication Option, RFC 1416, February 1983,
http://www.iett.org/rfc/rfc1416.txt.

D. Borman, Telnet Authentication: Kerberos Version 4, RFC 1411, January
1983, http://www.iett.org/rtc/rtc1411.txt.

T. Ts’o and J. Altman, Telnet Authentication Option, RFC 2941, September
2000, http://www.iett.org/rfc/rtc2941.txt.

T. Ts’o, Telnet Authentication: Kerberos 5, RFC 2942, September 2000,
http://www.iett.org/rfc/rfc2942.txt.

T. Ts’o, Telnet Data Encryption Option, RFC 2946, September 2000,
http://www.ietf.org/rtc/rtc2946.txt.

KTH Kerberos IV Implementation, http://www.pdc.kth.se/kth-krb/
Heimdal Kerberos V Implementation, http://www.pdc.kth.se/heimdal/

[10] T. Dierks and C. Allen, The TLS Protocol Version 1.0, RFC 2246, January

1999, http://www.iett.org/rtc/rtc2246.txt.

http://www.ietf.org/rfc/rfc854.txt
http://www.ietf.org/rfc/rfc1510.txt
http://www.ietf.org/rfc/rfc1416.txt
http://www.ietf.org/rfc/rfc1411.txt
http://www.ietf.org/rfc/rfc2941.txt
http://www.ietf.org/rfc/rfc2942.txt
http://www.ietf.org/rfc/rfc2946.txt
http://www.pdc.kth.se/kth-krb/
http://www.pdc.kth.se/heimdal/
http://www.ietf.org/rfc/rfc2246.txt

	Introduction
	Exploiting the weakness
	Conclusions

